1
|
Aiduang W, Jatuwong K, Kiatsiriroat T, Kamopas W, Tiyayon P, Jawana R, Xayyavong O, Lumyong S. Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview. Life (Basel) 2025; 15:317. [PMID: 40003725 PMCID: PMC11857507 DOI: 10.3390/life15020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Spent mushroom substrate (SMS), a nutrient-dense byproduct of mushroom cultivation, has emerged as a promising feedstock for biochar production, offering a sustainable solution to modern agricultural and environmental challenges. This review explores SMS properties, its conversion into biochar, and its various applications. Due to its lignocellulosic structure, high organic matter (OM), and essential nutrients, SMS is ideal for pyrolysis, a process that enhances biochar's porosity, nutrient retention, and carbon stability. These properties improve soil fertility, water retention, microbial activity, and plant growth while also contributing to climate change mitigation through carbon sequestration. SMS-derived biochar stands out for its superior benefits, including a balanced pH, a rich nutrient profile, and the ability to adsorb heavy metals, which mitigates soil and water contamination and minimizes toxic risks in the food chain. By enhancing soil structure, nutrient cycling, and moisture retention, SMS-derived biochar supports sustainable farming practices that reduce chemical fertilizer use and boost climate resilience. Beyond soil applications, SMS-derived biochar is effective in wastewater treatment, mitigating plant diseases, and improving mushroom cultivation substrates, thereby enhancing mycelial growth and productivity. Economically, it is a cost-effective alternative due to the abundant availability and inexpensive nature of SMS. Nevertheless, challenges still exist, particularly in optimizing production methods and ensuring consistency in biochar properties, influenced by variations in pyrolysis conditions and SMS types. Advances in production technology and sustainable practices are vital for scaling up SMS-derived biochar production. This paper emphasizes the transformative potential of SMS-derived biochar, advocating for its integration into circular economy frameworks and sustainable agricultural systems. Recommendations for future research and policy support are provided to maximize the ecological and economic benefits of SMS-derived biochar, fostering its widespread adoption in global agricultural and environmental strategies.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kritsana Jatuwong
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (W.A.); (K.J.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tanongkiat Kiatsiriroat
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wassana Kamopas
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimsiri Tiyayon
- School of Agricultural Resources, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rotsukon Jawana
- Energy Research and Development Institute-Nakornping, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Orlavanh Xayyavong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Tao WQ, Wu QQ, Zhang J, Chang TT, Liu XN. Effects of Applying Organic Amendments on Soil Aggregate Structure and Tomato Yield in Facility Agriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3064. [PMID: 39519978 PMCID: PMC11548510 DOI: 10.3390/plants13213064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Amendment significantly improves soil structure and promotes crop growth. To combat soil degradation and low crop yields in facility agriculture, it is crucial to study the optimal application rate of amendments. This study analyzed the effects of biochar, vermicompost, and mineral-source potassium fulvic acid on the stability of aggregate structure, soil nutrient content, and tomato yield in cambisols, providing a theoretical basis for improving the soil quality of plastic greenhouses in Southern China. A pot experiment on tomato cultivation was carried out in yellow-brown soil in plastic greenhouses. The experiment included eight treatments: 1% biochar (B1); 3% biochar (B3); 5% biochar (B5); 3% vermicompost (V3); 5% vermicompost (V5); 0.1% mineral-source potassium fulvic acid (F1); 0.2% mineral-source potassium fulvic acid (F2); and the control condition without adding soil amendments (CK). The results showed that the biochar and vermicompost treatments effectively reduced soil bulk density and increased total soil porosity. Compared to the control, treatments with soil amendments significantly increased soil pH and had different effects on soil nutrients: F2 showed the most significant improvement in the content of available nitrogen, available phosphorus, and available potassium, with an increase of 133.33%, 834.59%, and 74.34%, respectively; B3 treatment had the highest increase in dissolved organic carbon (DOC), while B5 treatment had the highest organic matter content. Compared to the CK, the particle size of the biochar treatment was mainly 0.053~0.25 mm, while the V3, F1, and F2 mainly occurred with a particle size > 0.25 mm; and V3 has the best aggregate stability. Biochar, vermicompost, and mineral potassium fulvic acid can all promote tomato yield, with the F2 and V3 treatments having a yield increase effect of over 30%. Furthermore, Pearson's correlation analysis showed a highly significant positive correlation between geometric mean diameter (GMD) and mean weight diameter (MWD), water-stable macroaggregate content (R0.25), and a positive correlation between alkaline-dissolved nitrogen, available phosphorus, dissolved organic carbon content, and aggregate stability indicators. Adding 0.2% mineral-source potassium fulvic acid optimizes cambisols' properties, enhances aggregate formation and stability, boosts tomato yield, and shows great application potential.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; (W.-Q.T.); (Q.-Q.W.); (T.-T.C.); (X.-N.L.)
| | | | | |
Collapse
|
3
|
Urugo MM, Teka TA, Gemede HF, Mersha S, Tessema A, Woldemariam HW, Admassu H. A comprehensive review of current approaches on food waste reduction strategies. Compr Rev Food Sci Food Saf 2024; 23:e70011. [PMID: 39223762 DOI: 10.1111/1541-4337.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Food waste is a serious worldwide issue that has an impact on the environment, society, and economy. This comprehensive review provides a detailed description of methods and approaches for reducing food waste, emphasizing the necessity of comprehensive strategies to tackle its intricate relationship with environmental sustainability, social equity, and economic prosperity. By scrutinizing the extent and impact of food waste, from initial production stages to final disposal, this comprehensive review underlines the urgent need for integrated solutions that include technological advancements, behavioral interventions, regulatory frameworks, and collaborative endeavors. Environmental assessments highlight the significant contribution of food waste to greenhouse gas emissions, land degradation, water scarcity, and energy inefficiency, thereby emphasizing the importance of curtailing its environmental impact. Concurrently, the social and economic consequences of food waste, such as food insecurity, economic losses, and disparities in food access, underscore the imperative for coordinated action across multiple sectors. Food waste can also be effectively reduced by various innovative approaches, such as technological waste reduction solutions, supply chain optimization strategies, consumer behavior-focused initiatives, and waste recovery and recycling techniques. Furthermore, in order to foster an environment that encourages the reduction of food waste and facilitates the transition to a circular economy, legislative changes and regulatory actions are essential. By embracing these multifaceted strategies and approaches, stakeholders can unite to confront the global food waste crisis, thereby fostering resilience, sustainability, and social equity within our food systems.
Collapse
Affiliation(s)
- Markos Makiso Urugo
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Department of Food Science and Postharvest Technology, Wachemo University, Hosaina, Ethiopia
| | - Tilahun A Teka
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Habtamu Fikadu Gemede
- Food Technology and Process Engineering Department, Wollega University, Nekemte, Ethiopia
| | - Siwan Mersha
- Department of Food Science and Postharvest Technology, Wachemo University, Hosaina, Ethiopia
| | - Ararsa Tessema
- Department of Food Engineering, Arba Minch University, Arba Minch, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Habtamu Admassu
- Department of Food Process Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocessing Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Liang D, Ning Y, Ji C, Zhang Y, Wu H, Ma H, Zhang J, Wang J. Biochar and Manure Co-Application Increases Rice Yield in Low Productive Acid Soil by Increasing Soil pH, Organic Carbon, and Nutrient Retention and Availability. PLANTS (BASEL, SWITZERLAND) 2024; 13:973. [PMID: 38611502 PMCID: PMC11013642 DOI: 10.3390/plants13070973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
In recent years, overuse of chemical fertilization has led to soil acidification and decreased rice yield productivity in southern China. Biochar and manure co-application remediation may have positive effects on rice yield and improve acid paddy soil fertility. This study was conducted to understand the effects of co-application of wood biochar and pig manure on rice yield and acid paddy soil quality (0-40 cm soil layers) in a 5-year field experiment. The experiment consisted of six treatments: no biochar and no fertilizer (CK); biochar only (BC); mineral fertilizer (N); mineral fertilizer combined with biochar (N + BC); manure (25% manure N replacing fertilizer N) combined with mineral fertilizer (MN); and manure combined with mineral fertilizer and biochar (MN + BC). Total nitrogen application for each treatment was the same at 270 kg nitrogen ha-1y-1, and 30 t ha-1 biochar was added to the soil only in the first year. After five years, compared with N treatments, N + BC, MN, and MN + BC treatments increased the rice yield rate to 2.8%, 4.3%, and 6.3%, respectively, by improving soil organic matter, total nitrogen, and available phosphate under a 0-40 cm soil layer. MN + BC had the strongest resistance to soil acidification among all the treatments. The interaction between fertilizers and biochar application was significant (p < 0.05) in rice yield, soil electrical conductivity (10-20 cm), and soil available phosphate (20-40 cm). Principal component analysis indicated that the effect of manure on soil property was stronger than that of biochar in the 0-40 cm soil layer. The overall rice yield and soil fertility decreased in the order of biochar + mineral fertilizer + manure > mineral fertilizer + manure > biochar + mineral fertilizer > mineral fertilizer > biochar > control. These results suggest that biochar and manure co-application is a long-term viable strategy for improving acid soil productivity due to its improvements in soil pH, organic carbon, nutrient retention, and availability.
Collapse
Affiliation(s)
- Dong Liang
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yunwang Ning
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cheng Ji
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yongchun Zhang
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Huashan Wu
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Hongbo Ma
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jianwei Zhang
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jidong Wang
- Scientific Observatory and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.L.)
- Key Laboratory of Saline-Alkali Soil improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|