1
|
Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P. Intercropping of non-leguminous crops improves soil biochemistry and crop productivity: a meta-analysis. THE NEW PHYTOLOGIST 2025; 246:961-971. [PMID: 40022473 DOI: 10.1111/nph.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
Plant species-rich systems tend to be more productive than depauperate ones. In agroecosystems, increasing crop plant diversity by including legumes often increases soil nitrogen (N) and improves soil fertility; however, such generality in outcomes of non-leguminous crop mixture is unknown. Here, through a meta-analysis of 174 individual cases, we explored the current global research trend of intercropping of exclusively non-leguminous crops (ICnl) and quantified its effect on agroecosystem productivity key metrics, for example crop plant health, soil chemistry, and microbial community under diverse experimental conditions. ICnl increased plant biomass and disease suppression and provided a notable yield advantage over monocultures. In addition to phosphorus and potassium, ICnl also increased plant-available soil N, which, along with increased soil microbial abundance, was positively associated with increased soil organic matter. These positive effects were more pronounced in experiments with long duration (> 1 yr), field soil conditions, and soil pH > 7. ICnl improves several crop productivity metrics, which could augment sustainable crop production, particularly when practiced for a long duration and in alkaline soils.
Collapse
Affiliation(s)
- Muhammad Khashi U Rahman
- Microbiology and Genetics Department & Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department & Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, 14220, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department & Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, 37007, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, Salamanca, 37008, Spain
| |
Collapse
|
2
|
Zhou X, Liao L, Chen K, Yin Y, Qiu L, Li X, Li Q, Yang S. Diversity and composition of soil microbial communities in the rhizospheres of late blight-resistant tomatoes after Phytophthora infestans inoculation. FRONTIERS IN PLANT SCIENCE 2025; 16:1556928. [PMID: 40123946 PMCID: PMC11925920 DOI: 10.3389/fpls.2025.1556928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Late blight caused by the oomycete Phytophthora infestans poses a severe threat to global tomato (Solanum lycopersicum L.) production. While genetic resistance forms the cornerstone of disease control, the mechanisms underlying cultivar-specific resistance, particularly their interactions with rhizosphere microbiomes, remain poorly understood. To elucidate the mechanisms of tomato cultivar resistance to late blight and screen out antagonistic microorganisms against P. infestans, we investigated the microbial compositions in the rhizospheres of tomato cultivars with different late blight-resistance levels under both natural and P. infestans-inoculated conditions. Considerable differences in soil microbial diversity and composition of rhizospheres were found between late blight-resistant and -susceptible tomato cultivars. Under natural conditions, the resistant tomato cultivar exhibited higher bacterial diversity and lower fungal diversity than that of the susceptible cultivar. Additionally, after P. infestans inoculation, both the resistant and susceptible cultivars showed enrichment of microorganisms with potential antagonistic effects in the rhizospheres. Among them, bacterial genera, such as Pseudomonas, Azospirillum, and Acidovorax, and fungal genera, including Phoma, Arthrobotrys, Pseudallescheria, and Pseudolabrys, were enriched in the rhizospheres of the late blight-resistant tomato cultivar. In contrast, bacterial genera, including Flavobacterium, Pseudolabrys, and Burkholderia-Caballeronia-Paraburkholderia, and the Trichoderma fungal genus were enriched in the rhizospheres of the late blight-susceptible tomato cultivar. Simultaneously, the enrichment of pathogenic microorganisms, such as Neocosmospora and Plectosphaerella, was also detected in the rhizospheres of the susceptible tomato cultivar. Moreover, no enrichment of pathogenic microorganisms occurred in the late blight-resistant tomato cultivar after P. infestans inoculation. These findings suggest that these traits serve as effective defense mechanisms against pathogen invasion in resistant tomato cultivar. Overall, this study provides a comprehensive analysis of the rhizosphere microbial community structures in late blight-resistant and -susceptible tomato cultivars under natural conditions and their response following pathogen inoculation. Additionally, potential antagonistic microorganisms against late blight were also identified. The findings offer valuable insights for effective late blight management in tomatoes and contribute to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shangdong Yang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National
Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Gu Y, Jiao J, Xu H, Chen Y, He X, Wu X, Wang J, Chen X, He H, Yan W. Intercropping improves the yield by increasing nutrient metabolism capacity and crucial microbial abundance in root of Camellia oleifera in purple soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109318. [PMID: 39608339 DOI: 10.1016/j.plaphy.2024.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Intercropping system influences the endophytic microbial abundance, hormone balance, nutrient metabolism and yield, but the molecular mechanism of yield advantage in Camellia oleifera intercropping with peanut is not clear. In this study, the C. oleifera monoculture (CK) and C. oleifera-peanut intercropping (CP) treatments in purple soil were conducted, and the physicochemical properties, gene expressions, signal pathways and crucial microbial abundances were investigated to reveal the molecular mechanism of the yield advantage of intercropped C. oleifera. The results showed that the intercropping system increased in contents of pigment, carbohydrate, available nitrogen and phosphorus in leaf and root, as well as the abundances of Burkholderia, Ralstonia, Delftia, Pseudoalteromonas and Caulobacter, enhanced the relative expression levels of CoSPS, CoGBE, CoGlgP, CoGBSS/GlgA genes to promote sugar metabolism, decreased the relative expression levels of CoASA, CoTSB, CoPAI, CoTDC and CoCYP71A13 genes for inhibiting IAA biosynthesis and signal transduction, as well as microbial diversity, Fusarium, Albifimbria and Coniosporium abundances in root, ultimately improved the fruit yield of C. oleifera. These findings indicate that intercropping system improves the fruit yield by enhancing the nutrient metabolism capability and crucial microbial abundances in root of C. oleifera in purple soil.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Haobo Xu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Yazhen Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xiaohong Wu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Jun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China.
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China.
| |
Collapse
|
4
|
Morales ME, Allegrini M, Basualdo J, Iocoli GA, Villamil MB, Zabaloy MC. Winter cover crop suppression methods influence on sunflower growth and rhizosphere communities. Front Microbiol 2024; 15:1405842. [PMID: 38993498 PMCID: PMC11238176 DOI: 10.3389/fmicb.2024.1405842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Sunflower (Helianthus annuus L.), a vital crop for global vegetable oil production, encounters sustainability challenges in its cultivation. This study assesses the effects of incorporating a winter cover crop (CC), Avena sativa (L.), on the subsequent growth of sunflower crops and the vitality of their rhizosphere microbial communities over a two-year period. It examines the impact of two methods for suppressing winter CC-chemical suppression using glyphosate and mechanical suppression via rolling-both with and without the addition of phosphorus (P) starter fertilizer. These approaches are evaluated in comparison to the regional best management practices for sunflower cultivation, which involve a preparatory chemical fallow period and the subsequent application of starter P fertilizer. The methodology utilized Illumina sequencing for the analysis of rhizosphere bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicons. Findings indicate a significant improvement (9-37%) in sunflower growth parameters (plant height, stem diameter, head diameter, and head dry weight) when cultivated after glyphosate-suppressed winter CC compared to the chemical fallows. Conversely, rolling of winter CC generally negatively affected sunflower growth. Rhizosphere bacterial communities following chemical suppression of winter CC showed greater Pielou's evenness, indicating a uniform distribution of species. In general, this treatment had more detrimental effects on beneficial sunflower rhizosphere bacteria such as Hymenobacter and Pseudarthrobacter than rolling of the winter CC, suggesting that the overall effect on sunflower growth may be mitigated by the redundancy within the bacterial community. As for fungal diversity, measured by the Chao-1 index, it increased in sunflowers planted after winter CC and receiving P fertilization, underscoring nutrient management's role in microbial community structure. Significant positive correlations between fungal diversity and sunflower growth parameters at the reproductive stage were observed (r = 0.41-0.72; p < 0.05), highlighting the role of fungal communities in plant fitness. The study underscores the positive effects of winter CC inclusion and management for enhancing sunflower cultivation while promoting beneficial microbes in the crop's rhizosphere. We advocate for strategic winter CC species selection, optimization of mechanical suppression techniques, and tailored phosphorus fertilization of sunflower to foster sustainable agriculture.
Collapse
Affiliation(s)
- Marianela Estefanía Morales
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Du YC, Yuan CS, Song YQ, Yang Y, Zheng QS, Hou Q, Wang D, Wang L. Enhancing soil health and strawberry disease resistance: the impact of calcium cyanamide treatment on soil microbiota and physicochemical properties. Front Microbiol 2024; 15:1366814. [PMID: 38577678 PMCID: PMC10991749 DOI: 10.3389/fmicb.2024.1366814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.
Collapse
Affiliation(s)
- Ying-chun Du
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Can-sheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Yu-qi Song
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Qing-song Zheng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, Hainan, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiong Hou
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Di Wang
- Sanya Research Institute, Nanjing Agricultural University, Sanya, Hainan, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Wang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| |
Collapse
|
6
|
Wang Y, Han X, Zhao X, Zhang Y, Qi B, Li L. Grain yield and interspecific competition in an oat-common vetch intercropping system at varying sowing density. FRONTIERS IN PLANT SCIENCE 2024; 15:1344110. [PMID: 38525147 PMCID: PMC10957561 DOI: 10.3389/fpls.2024.1344110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Introduction Oat (Avena nuda L.) and common vetch (Vicia sativa L.) intercropping in the northern regions of China has resulted in substantial production capabilities. However, there is currently a dearth of comprehensive research on whether this intercropping system can enhance productivity through increased sowing densities and underlying interspecies interaction mechanisms. Methods A two-year field experiment was conducted in 2022 and 2023 to investigate the yield, biological efficiency, economic efficiency, and competition indicators of oats and common vetch in a high-density intercropping system. Two cropping patterns (monocropping and intercropping) and five sowing densities (D1: 4.5×106 plants ha-1; D2:5.4×106 plants ha-1; D3:6.3×106 plants ha-1; D4: 7.2×106 plants ha-1; and D5: 8.1×106 plants ha-1) were arranged in a randomized block design. Results At the same sowing density, the intercropped oats exhibited greater grain yield than the monocultures. Increasing the oat sowing density significantly enhanced oat yield, with the D3 level in intercropping showing the highest yield increase, ranging from 30.98% to 31.85%, compared with the monoculture. The common vetch intercropping grain yield was maximized in the D2 treatment. The land equivalent ratio was maximized at the D2 level in both years and was significantly higher than D1, with the land equivalent coefficient, system productivity index, and percentage yield difference suggesting that increasing oat sowing densities improved the productivity of the intercropping system, with the best performance observed at the D2 level. For both years, the proportionate actual yield loss of oat was the highest at the D3 level; significantly surpassing D1, proportionate actual yield loss of common vetch and actual yield loss were the highest at level D2, both significantly surpassing D1. These indicates that appropriate densification contributes to the realization of the advantages of intercropping. With an increased oat sowing density, the economic benefits of the intercropping system were maximized at the D2 and D3 levels. Regarding intercropping competition, oat was the dominant crop under different sowing densities (Aggressivity for oat (AO)>0, relative crowding coefficient for oat (KO)>1, competition ratio for oat (CRO)>1), whereas common vetch was the inferior crop. Compared with the D1 level, the D2 level harmonized the aggressivity, competitive ratio, and relative crowding coefficients of oat and common vetch, significantly increasing crowding coefficient for common vetch (KV) and competition ratio for common vetch by 19.76% to 21.94% and 4.80% to 7.51%, respectively, while reducing KO and CRO. Discussion This result suggests that in the intercropping of common vetch and oat in alpine regions, rational densification can harmonize interspecific competition and thus improve the biological efficiency and economic benefits of intercropping systems.
Collapse
Affiliation(s)
| | | | | | | | - Bingjie Qi
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| | - Lijun Li
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Tang J, Han Y, Pei L, Gu W, Qiu R, Wang S, Ma Q, Gan Y, Tang M. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins. Open Life Sci 2023; 18:20220769. [PMID: 38027226 PMCID: PMC10668115 DOI: 10.1515/biol-2022-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to explore the important role of the rhizosphere microbiome in the quality of Atractylodes lancea (Thunb.) DC. (A. lancea). The rhizosphere microbial community of A. lancea at two sampling sites was studied using metagenomic technology. The results of α-diversity analysis showed that the rhizosphere microbial richness and diversity were higher in the Maoshan area. The higher abundance of core microorganisms of the rhizosphere, especially Penicillium and Streptomyces, in the Maoshan area compared with those in the Yingshan area might be an important factor affecting the yield of A. lancea. Redundancy analysis illustrated that the available phosphorus had a significant effect on the rhizosphere microbial community structure of A. lancea. We also showed that the plant-microbe and microbe-microbe interactions were closer in the Maoshan area than in the Yingshan area, and Streptomyces were the main contributors to the potential functional difference between the two regions. A. lancea in the Maoshan area had a high content of atractylodin and atractylon, which might be related to the enhanced abundance of Streptomyces, Candidatus-Solibacter, and Frankia. Taken together, this study provided theoretical insights into the interaction between medicinal plants and the rhizosphere microbiome and provides a valuable reference for studying beneficial microbes of A. lancea.
Collapse
Affiliation(s)
- Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Yun Han
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Lingfeng Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,
Nanjing, 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, China
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Yifu Gan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Min Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| |
Collapse
|
8
|
Chen W, Modi D, Picot A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2736. [PMID: 37514350 PMCID: PMC10384710 DOI: 10.3390/plants12142736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dixi Modi
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
9
|
Xu J, Qin L, Xu X, Shen H, Yang X. Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and outside the Root. Int J Mol Sci 2023; 24:ijms24087227. [PMID: 37108389 PMCID: PMC10138817 DOI: 10.3390/ijms24087227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can promote plant growth in various ways, allowing PGPB to replace chemical fertilizers to avoid environmental pollution. PGPB is also used for bioremediation and in plant pathogen control. The isolation and evaluation of PGPB are essential not only for practical applications, but also for basic research. Currently, the known PGPB strains are limited, and their functions are not fully understood. Therefore, the growth-promoting mechanism needs to be further explored and improved. The Bacillus paralicheniformis RP01 strain with beneficial growth-promoting activity was screened from the root surface of Brassica chinensis using a phosphate-solubilizing medium. RP01 inoculation significantly increased plant root length and brassinosteroid content and upregulated the expression of growth-related genes. Simultaneously, it increased the number of beneficial bacteria that promoted plant growth and reduced the number of detrimental bacteria. The genome annotation findings also revealed that RP01 possesses a variety of growth-promoting mechanisms and a tremendous growth-promoting potential. This study isolated a highly potential PGPB and elucidated its possible direct and indirect growth-promoting mechanisms. Our study results will help enrich the PGPB library and provide a reference for plant-microbe interactions.
Collapse
Affiliation(s)
- Jinzhi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Lijun Qin
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| |
Collapse
|