1
|
Salisu Jibia S, Panjama K, Inkham C, Sato T, Ohtake N, Ruamrungsri S. Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry ( Fragaria × ananassa Duch.). PLANTS (BASEL, SWITZERLAND) 2024; 14:89. [PMID: 39795348 PMCID: PMC11723106 DOI: 10.3390/plants14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory. The results revealed that the interaction of L3 coupled with N2 maximized the vegetative growth of strawberry plants, whereas L2 and N2 produced the greatest biomass, while L2 interacted with N1 to expedite flowering. Photosynthesis and transpiration were enhanced by L3, particularly with 100 mg/L of nitrogen. The highest fruit yield and total soluble solids were obtained at the interaction of L3 and N1. Leaf nutrient analysis showed the highest nitrogen concentration at L1, while potassium increased with higher red LED ratios. The 100 mg/L nitrogen treatment resulted in higher leaf potassium concentrations than the 200 mg/L. These findings emphasize that LED spectra and nitrogen levels interact to optimize the physiology, vegetative and reproductive growth, maximizing fruit yield and quality in indoor strawberry cultivation. The study also concludes that the application of blue and red LED in the ratio of 1:6 with 100 mg/L nitrogen can improve indoor 'Praratchatan 80' strawberry performance.
Collapse
Affiliation(s)
- Sirajo Salisu Jibia
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Ph.D. Horticulture Program, Department of Plant and Soil Sciences, Faculty of Agriculture Under the CMU Presidential Scholarship, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Agricultural Technology, Federal College of Agricultural Produce Technology, Kano 700223, Nigeria
| | - Kanokwan Panjama
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
| | - Chaiartid Inkham
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takashi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan;
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Soraya Ruamrungsri
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.J.); (K.P.)
- Economic Flower and Horticultural Crops Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand;
- H. M. The King’s Initiative Centre for Flower and Fruit Propagation, Chiang Mai 50230, Thailand
| |
Collapse
|
2
|
Sun L, Li D, Ma C, Jiao B, Wang J, Zhao P, Dong F, Zhou S. Transcriptomic Analysis of Wheat Under Multi LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 14:46. [PMID: 39795306 PMCID: PMC11723344 DOI: 10.3390/plants14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date. In this study, we conducted a comprehensive transcriptome analysis to investigate the molecular mechanisms underlying wheat plants' response to varying light conditions. We identified 34 types of transcription factors (TFs) and highlighted the dynamic changes of key families such as WRKY, AP2/ERF, MYB, bHLH, and NAC, which play crucial roles in light-induced gene regulation. Additionally, this study revealed differential effects of blue and red light on the expression levels of genes related to hormones such as cytokinin (CK) and salicylic acid (SA) synthesis as well as significant changes in pathways such as flavonoid biosynthesis, circadian rhythms, chlorophyll synthesis, and flowering. Particularly, blue light upregulated genes involved in chlorophyll synthesis, contrasting with the downregulation observed under red light. Furthermore, blue light enhanced the expression of anthocyanin synthesis-related genes, such as CHS, underscoring its role in promoting anthocyanin accumulation. These findings provide valuable insights into how light quality impacts crop growth and development.
Collapse
Affiliation(s)
- Lei Sun
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Ding Li
- Dry-Land Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jiao Wang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Fushuang Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
3
|
He R, Ju J, Liu K, Song J, Zhang S, Zhang M, Hu Y, Liu X, Li Y, Liu H. Technology of plant factory for vegetable crop speed breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1414860. [PMID: 39055363 PMCID: PMC11269239 DOI: 10.3389/fpls.2024.1414860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Sustaining crop production and food security are threatened by a burgeoning world population and adverse environmental conditions. Traditional breeding methods for vegetable crops are time-consuming, laborious, and untargeted, often taking several years to develop new and improved varieties. The challenges faced by a long breeding cycle need to be overcome. The speed breeding (SB) approach is broadly employed in crop breeding, which greatly shortens breeding cycles and facilities plant growth to obtain new, better-adapted crop varieties as quickly as possible. Potential opportunities are offered by SB in plant factories, where optimal photoperiod, light quality, light intensity, temperature, CO2 concentration, and nutrients are precisely manipulated to enhance the growth of horticultural vegetable crops, holding promise to surmount the long-standing problem of lengthy crop breeding cycles. Additionally, integrated with other breeding technologies, such as genome editing, genomic selection, and high-throughput genotyping, SB in plant factories has emerged as a smart and promising platform to hasten generation turnover and enhance the efficiency of breeding in vegetable crops. This review considers the pivotal opportunities and challenges of SB in plant factories, aiming to accelerate plant generation turnover and improve vegetable crops with precision and efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Li K, Ji L, Xing Y, Zuo Z, Zhang L. Data-Independent Acquisition Proteomics Reveals the Effects of Red and Blue Light on the Growth and Development of Moso Bamboo ( Phyllostachys edulis) Seedlings. Int J Mol Sci 2023; 24:ijms24065103. [PMID: 36982175 PMCID: PMC10049362 DOI: 10.3390/ijms24065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Moso bamboo is a rapidly growing species with significant economic, social, and cultural value. Transplanting moso bamboo container seedlings for afforestation has become a cost-effective method. The growth and development of the seedlings is greatly affected by the quality of light, including light morphogenesis, photosynthesis, and secondary metabolite production. Therefore, studies on the effects of specific light wavelengths on the physiology and proteome of moso bamboo seedlings are crucial. In this study, moso bamboo seedlings were germinated in darkness and then exposed to blue and red light conditions for 14 days. The effects of these light treatments on seedling growth and development were observed and compared through proteomics analysis. Results showed that moso bamboo has higher chlorophyll content and photosynthetic efficiency under blue light, while it displays longer internode and root length, more dry weight, and higher cellulose content under red light. Proteomics analysis reveals that these changes under red light are likely caused by the increased content of cellulase CSEA, specifically expressed cell wall synthetic proteins, and up-regulated auxin transporter ABCB19 in red light. Additionally, blue light is found to promote the expression of proteins constituting photosystem II, such as PsbP and PsbQ, more than red light. These findings provide new insights into the growth and development of moso bamboo seedlings regulated by different light qualities.
Collapse
Affiliation(s)
- Ke Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaoyun Xing
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|