1
|
Yang X, Tang S, Du C, Chen Y, Luo Z, Li M, Liu S, Duan M, Jiang D, Shen Y, Zhang Q, Du C. Insights into the mitochondrial genome structure and phylogenetic placement of Theileria velifera in comparison to other apicomplexan parasites. Sci Rep 2025; 15:10637. [PMID: 40148485 PMCID: PMC11950482 DOI: 10.1038/s41598-025-92939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
In this study, we sequenced the complete mitochondrial genome of Theileria velifera and compared it with other Apicomplexan parasites. The mitochondrial genome of T. velifera is a linear monomer molecule spanning 6,125 bp, and it encodes 3 protein-coding genes (PCGs): cox1, cob, and cox3. Besides, it contains 5 large subunit (LSU) rRNA gene fragments and terminal inverted repeats (TIR) at both ends. Moreover, the mitochondrial genomes of most Apicomplexan parasites in this study are typically around 6,000 bp in length and are linear in structure, featuring three PCGs. The start codons observed in Thaleria spp. and Babesia spp. parasites predominantly include ATN, GTN, and TTN, while the end codons are mainly TAA, TAG, and TGA. Phylogenetic analysis showed that T. velifera was closely related to T. annulata, T. parva, T. taurotragi and T. lestoquardi. The complete mitochondrial genome sequence of T. velifera was examined and compared to other Apicomplexan parasites in this study, offering fresh perspectives on the evolution and phylogenetic connections among these parasites.
Collapse
Affiliation(s)
- Xing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission of the People's Republic of China, World Health Organization, Shanghai, 200025, China
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Shaobo Tang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission of the People's Republic of China, World Health Organization, Shanghai, 200025, China
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Chaobo Du
- Yunan Institute of Eudemic Diseases Control and Prevention, Yunnan Provincial key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Dali, 671000, China
- School of Public Health, Dali University, Dali, 671000, China
| | - Yuqing Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission of the People's Republic of China, World Health Organization, Shanghai, 200025, China
| | - Zhi Luo
- Yunan Institute of Eudemic Diseases Control and Prevention, Yunnan Provincial key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Dali, 671000, China
| | - Miao Li
- Yunan Institute of Eudemic Diseases Control and Prevention, Yunnan Provincial key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Dali, 671000, China
| | - Shuang Liu
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Mingna Duan
- Integrated Laboratory of Pathogenic Biology, College of Preclinical Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Dandan Jiang
- School of Public Health, Dali University, Dali, 671000, China
| | - Yujuan Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Parasite and Vector Biology, Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission of the People's Republic of China, World Health Organization, Shanghai, 200025, China.
| | - Quanfu Zhang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Sichuan, China.
| | - Chunhong Du
- Yunan Institute of Eudemic Diseases Control and Prevention, Yunnan Provincial key Laboratory of Natural Epidemic Disease Prevention and Control Technology, Dali, 671000, China.
| |
Collapse
|
2
|
Ouyang L, Li X, Wang R, Chen Y, Wang S, Wang J, Tian Y. Comprehensive analysis of the mitochondrial genome of Iris domestica emphasizing multichromosomal organization and repeat-mediated homologous recombination. FRONTIERS IN PLANT SCIENCE 2025; 15:1520033. [PMID: 40083896 PMCID: PMC11903213 DOI: 10.3389/fpls.2024.1520033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 03/16/2025]
Abstract
Background Iris domestica is a perennial herb valued for both its ornamental and medicinal properties. Despite its significance, no comprehensive analysis of its mitochondrial genome has been previously reported. Plant mitochondrial genomes are known for their large size, structural complexity, and frequent recombination events. This study aims to provide the first complete assembly and characterization of the mitochondrial genome of I. domestica, with a focus on its structure, gene content, repeat elements, and RNA editing sites. Results We used GetOrganelle and Unicycler software to hybrid assemble Nanopore and Illumina data to obtain the mitochondrial genome of I. domestica. The mitochondrial genome of I. domestica consists of four contigs: contig1 (222,498 bp), contig2 (90,780 bp), contig3 (42,563 bp), and contig4 (39,247 bp). Two repeat sequences, R1 (7,784 bp) and R2 (3,519 bp), facilitate the conformation of three circular chromosomes, suggesting a complex multi-chromosomal structure. A total of 34 protein-coding genes, including 24 core genes and 10 non-core genes were identified. Analysis of tandem repeat elements revealed significant variability, with Chromosome 1 showing the highest diversity of SSRs and scattered repeats. Additionally, 20 homologous fragments were identified between the mitochondrial and chloroplast genomes, accounting for 1.10% of the mitochondrial genome. Phylogenetic analysis based on 24 conserved mitochondrial genes placed I. domestica in close relation to Iris domestica and Crocus sativus. Furthermore, 545 RNA editing sites were identified, with notable variations across genes, suggesting that RNA editing plays a significant role in regulating mitochondrial gene expression. Conclusion The complete assembly of the I. domestica mitochondrial genome reveals a complex multichromosomal structure characterized by recombination events. The high number of RNA editing sites and the presence of transferred plastid DNA highlight the dynamic nature of the genome, contributing to its adaptability and evolution. These findings provide a genetic foundation into the plant's medicinal properties, adaptive mechanisms, and potential for environmental resilience.
Collapse
Affiliation(s)
- Lizhi Ouyang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xinyu Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Inner Mongolia, China
| | - Yixuan Chen
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Shuo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jianfang Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Yelin Tian
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Zhang K, Qu G, Zhang Y, Liu J. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. BMC PLANT BIOLOGY 2024; 24:1055. [PMID: 39511474 PMCID: PMC11546474 DOI: 10.1186/s12870-024-05780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Astragalus membranaceus (Fisch.) Bunge is one of the most well-known tonic herbs in traditional Chinese medicine, renowned for its remarkable medicinal value in various clinical contexts. The corresponding chloroplast (cp) and nuclear genomes have since been accordingly sequenced, providing valuable information for breeding and phylogeny studies. However, the mitochondrial genome (mitogenome) of A. membranaceus remains unexplored, which hinders comprehensively understanding the evolution of its genome. RESULTS For this study, we de novo assembled the mitogenome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K. Hsiao using a strategy integrating Illumina and Nanopore sequencing technology and subsequently performed comparative analysis with its close relatives. The mitogenome has a multi-chromosome structure, consisting of two circular chromosomes with a total length of 398,048 bp and an overall GC content of 45.3%. It encodes 54 annotated functional genes, comprising 33 protein-coding genes (PCGs), 18 tRNA genes, and 3 rRNA genes. An investigation of codon usage in the PCGs revealed an obvious preference for codons ending in A or U (T) bases, given their high frequency. RNA editing identified 500 sites in the coding regions of mt PCGs that exhibit a perfect conversion of the base C to U, a process that tends to lead to the conversion of hydrophilic amino acids into hydrophobic amino acids. From the mitogenome analysis, a total of 399 SSRs, 4 tandem repeats, and 77 dispersed repeats were found, indicating that A. membranaceus possesses fewer repeats compared to its close relatives with similarly sized mitogenomes. Selection pressure analysis indicated that most mt PCGs were purifying selection genes, while only five PCGs (ccmB, ccmFc, ccmFn, nad3, and nad9) were positive selection genes. Notably, positive selection emerged as a critical factor in the evolution of ccmB and nad9 in all the pairwise species comparisons, suggesting the extremely critical role of these genes in the evolution of A. membranaceus. Moreover, we inferred that 22 homologous fragments have been transferred from cp to mitochondria (mt), in which 5 cp-derived tRNA genes remain intact in the mitogenome. Further comparative analysis revealed that the syntenic region and mt gene organization are relatively conserved within the provided legumes. The comparison of gene content indicated that the gene composition of Fabaceae mitogenomes differed. Finally, the phylogenetic tree established from analysis is largely congruent with the taxonomic relationships of Fabaceae species and highlights the close relationship between Astragalus and Oxytropis. CONCLUSIONS We provide the first report of the assembled and annotated A. membranaceus mitogenome, which enriches the genetic resources available for the Astragalus genus and lays the foundation for comprehensive exploration of this invaluable medicinal plant.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Jianxia Liu
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China
| |
Collapse
|
4
|
Song Y, Yu QF, Zhang D, Chen LG, Tan YH, Zhu W, Su HL, Yao X, Liu C, Corlett RT. New insights into the phylogenetic relationships within the Lauraceae from mitogenomes. BMC Biol 2024; 22:241. [PMID: 39444010 PMCID: PMC11515631 DOI: 10.1186/s12915-024-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The family Lauraceae is subdivided into six main lineages: Caryodaphnopsideae, Cassytheae, Cryptocaryeae, Hypodaphnideae, Laureae, and Neocinnamomeae. However, phylogenetic relationships among these lineages have been debatable due to incongruence between trees constructed using nuclear ribosomal DNA (nrDNA) sequences and chloroplast (cp) genomes. As with cp DNA, the mitochondrial (mt) DNA of most flowering plants is maternally inherited, so the phylogenetic relationships recovered with mt genomes are expected to be consistent with that from cp genomes, rather than nrDNA sequences. RESULTS The mitogenome of Machilus yunnanensis, with a length of 735,392 bp, has a very different genome size and gene linear order from previously published magnoliid mitogenomes. Phylogenomic reconstructions based on 41 mt genes from 92 Lauraceae mitogenomes resulted in highly supported relationships: sisterhood of the Laureae and a group containing Neocinnamomeae and Caryodaphnopsideae, with Cassytheae being the next sister group, followed by Cryptocaryeae. However, we found significant incongruence among the mitochondrial, chloroplast, and nuclear phylogenies, especially for the species within the Caryodaphnopsideae and Neocinnamomeae lineages. Time-calibrated phylogenetic analyses showed that the split between Caryodaphnopsideae and Neocinnamomeae dated to the later Eocene, around 38.5 Ma, Laureae originated in the Late Cretaceous, around 84.9 Ma, Cassytheae originated in the mid-Cretaceous around 102 Ma, and Cryptocaryeae originated in the Early Cretaceous around 116 Ma. From the Late Cretaceous to the Paleocene, net diversification rates significantly increased across extant clades of major lineages, and both speciation rates and net diversification rates continued steady growth towards the present. CONCLUSIONS The topology obtained here for the first time shows that mt genes can be used to support relationships among lineages of Lauraceae. Our results highlight that both Caryodaphnopsideae and Neocinnamomeae lineages are younger than previously thought, likely first diversifying in the Eocene, and species in the other extant lineages of Lauraceae dates in a long-time span from the Early Cretaceous to the Eocene, and the climate of a period of about 90 million years was relatively warm, while the extant species of Lauraceae then continuously diversified with global cooling from the Eocene to the present day.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Qun-Fei Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Li-Gang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Hong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Menglun, Mengla, Yunnan, 666303, China
| | - Wen Zhu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hua-Long Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Xin Yao
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China.
| | - Richard T Corlett
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
5
|
Zhang Y, Zhang J, Chen Z, Huang Y, Liu J, Liu Y, Yang Y, Jin X, Yang Y, Chen Y. Comparison of organelle genomes between endangered mangrove plant Dolichandrone spathacea to terrestrial relative provides insights into its origin and adaptative evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1442178. [PMID: 39376234 PMCID: PMC11457174 DOI: 10.3389/fpls.2024.1442178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Dolichandrone spathacea is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, D. spathacea has become endangered in China. Moreover, misidentification between D. spathacea and its terrestrial relative D. cauda-felina poses further challenges to field protection and proper medicinal usage of D. spathacea. Thus, to address these problems, we sequenced and assembled mitochondrial (mt) and chloroplast (cp) genomes for both D. spathacea and D. cauda-felina. Comparative analysis revealed apparently different size and scaffold number between the two mt genomes, but a high similarity between the cp genomes. Eight regions with high sequence divergence were identified between the two cp genomes, which might be used for developing candidate DNA markers for distinguishing the two species. The splitting between D. spathacea and D. cauda-felina was inferred to occur at ~6.8 - 7.7 million years ago (Mya), which may be driven by the environment fluctuations in late Miocene. In the cp genome, 12 genes related to the expression of photosynthesis-associated proteins were detected with signatures of positive selection, which may contribute to the origin and evolutionary adaptation of Dolichandrone mangrove species. These new findings do not only enrich organelle genomic resources of Dolichandrone species, but also provide important genetic clues for improving the conservation and proper usage of endangered mangrove associate D. spathacea.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zewei Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Yanni Huang
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jiaxuan Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yiqing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| |
Collapse
|
6
|
Li Z, Liu J, Liang M, Guo Y, Chen X, Wu H, Jin S. De novo assembly of the complete mitochondrial genome of pepino (Solanum muricatum) using PacBio HiFi sequencing: insights into structure, phylogenetic implications, and RNA editing. BMC PLANT BIOLOGY 2024; 24:361. [PMID: 38702620 PMCID: PMC11069145 DOI: 10.1186/s12870-024-04978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.
Collapse
Affiliation(s)
- Ziwei Li
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiaxun Liu
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Mingtai Liang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Yanbing Guo
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xia Chen
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Hongzhi Wu
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shoulin Jin
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
7
|
Zhang K, Wang Y, Zhang Y, Shan X. Codon usage characterization and phylogenetic analysis of the mitochondrial genome in Hemerocallis citrina. BMC Genom Data 2024; 25:6. [PMID: 38218810 PMCID: PMC10788020 DOI: 10.1186/s12863-024-01191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Hemerocallis citrina Baroni is a traditional vegetable crop widely cultivated in eastern Asia for its high edible, medicinal, and ornamental value. The phenomenon of codon usage bias (CUB) is prevalent in various genomes and provides excellent clues for gaining insight into organism evolution and phylogeny. Comprehensive analysis of the CUB of mitochondrial (mt) genes can provide rich genetic information for improving the expression efficiency of exogenous genes and optimizing molecular-assisted breeding programmes in H. citrina. RESULTS Here, the CUB patterns in the mt genome of H. citrina were systematically analyzed, and the possible factors shaping CUB were further evaluated. Composition analysis of codons revealed that the overall GC (GCall) and GC at the third codon position (GC3) contents of mt genes were lower than 50%, presenting a preference for A/T-rich nucleotides and A/T-ending codons in H. citrina. The high values of the effective number of codons (ENC) are indicative of fairly weak CUB. Significant correlations of ENC with the GC3 and codon counts were observed, suggesting that not only compositional constraints but also gene length contributed greatly to CUB. Combined ENC-plot, neutrality plot, and Parity rule 2 (PR2)-plot analyses augmented the inference that the CUB patterns of the H. citrina mitogenome can be attributed to multiple factors. Natural selection, mutation pressure, and other factors might play a major role in shaping the CUB of mt genes, although natural selection is the decisive factor. Moreover, we identified a total of 29 high-frequency codons and 22 optimal codons, which exhibited a consistent preference for ending in A/T. Subsequent relative synonymous codon usage (RSCU)-based cluster and mt protein coding gene (PCG)-based phylogenetic analyses suggested that H. citrina is close to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in evolutionary terms, reflecting a certain correlation between CUB and evolutionary relationships. CONCLUSIONS There is weak CUB in the H. citrina mitogenome that is subject to the combined effects of multiple factors, especially natural selection. H. citrina was found to be closely related to Asparagus officinalis, Chlorophytum comosum, Allium cepa, and Allium fistulosum in terms of their evolutionary relationships as well as the CUB patterns of their mitogenomes. Our findings provide a fundamental reference for further studies on genetic modification and phylogenetic evolution in H. citrina.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China.
- Key Laboratory of Organic Dry Farming for Special Crops in Datong City, Datong, Shanxi, China.
| | - Yiheng Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yue Zhang
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| | - Xiaofei Shan
- College of Agriculture and Life Sciences, Shanxi Datong University, Datong, Shanxi, China
| |
Collapse
|
8
|
Guo Y, Li Z, Jin S, Chen S, Li F, Wu H. Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Two Species of Calla Lilies ( Zantedeschia, Araceae). Int J Mol Sci 2023; 24:ijms24119566. [PMID: 37298515 DOI: 10.3390/ijms24119566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, the mitochondrial genomes of two calla species, Zantedeschia aethiopica Spreng. and Zantedeschia odorata Perry., were assembled and compared for the first time. The Z. aethiopica mt genome was assembled into a single circular chromosome, measuring 675,575 bp in length with a 45.85% GC content. In contrast, the Z. odorata mt genome consisted of bicyclic chromosomes (chromosomes 1 and 2), measuring 719,764 bp and exhibiting a 45.79% GC content. Both mitogenomes harbored similar gene compositions, with 56 and 58 genes identified in Z. aethiopica and Z. odorata, respectively. Analyses of codon usage, sequence repeats, gene migration from chloroplast to mitochondrial, and RNA editing were conducted for both Z. aethiopica and Z. odorata mt genomes. Phylogenetic examination based on the mt genomes of these two species and 30 other taxa provided insights into their evolutionary relationships. Additionally, the core genes in the gynoecium, stamens, and mature pollen grains of the Z. aethiopica mt genome were investigated, which revealed maternal mitochondrial inheritance in this species. In summary, this study offers valuable genomic resources for future research on mitogenome evolution and the molecular breeding of calla lily.
Collapse
Affiliation(s)
- Yanbing Guo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Ziwei Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Shoulin Jin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuying Chen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Hongzhi Wu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|