1
|
Pokhrel S, Kharel P, Pandey S, Botton S, Nugraha GT, Holbrook C, Ozias-Akins P. Understanding the impacts of drought on peanuts (Arachis hypogaea L.): exploring physio-genetic mechanisms to develop drought-resilient peanut cultivars. Front Genet 2025; 15:1492434. [PMID: 39845184 PMCID: PMC11750809 DOI: 10.3389/fgene.2024.1492434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Peanut is a vital source of protein, particularly in the tropical regions of Asian and African countries. About three-quarters of peanut production occurs worldwide in arid and semi-arid regions, making drought an important concern in peanut production. In the US about two-thirds of peanuts are grown in non-irrigated lands, where drought accounts for 50 million USD loss each year. The looming threat of climate change exacerbates this situation by increasing erratic rainfall. Drought not only reduces yield but also degrades product quality. Peanuts under drought stress exhibit higher levels of pre-harvest aflatoxin contamination, a toxic fungal metabolite detrimental to both humans and animals. One way to sustain peanut production in drought-prone regions and address pre-harvest aflatoxin contamination is by developing drought-tolerant peanut cultivars, a process that can be accelerated by understanding the underlying physiological and genetic mechanisms for tolerance to drought stress. Different physiological attributes and genetic regions have been identified in drought-tolerant cultivars that help them cope with drought stress. The advent of precise genetic studies, artificial intelligence, high-throughput phenotyping, bioinformatics, and data science have significantly improved drought studies in peanuts. Yet, breeding peanuts for drought tolerance is often a challenge as it is a complex trait significantly affected by environmental conditions. Besides technological advancements, the success of drought-tolerant cultivar development also relies on the identification of suitable germplasm and the conservation of peanut genetic variation.
Collapse
Affiliation(s)
- Sameer Pokhrel
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Prasanna Kharel
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Swikriti Pandey
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Stephanie Botton
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Gema Takbir Nugraha
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Corley Holbrook
- United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| |
Collapse
|
2
|
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, Patil GB, Puppala N, Janga MR. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1759-1775. [PMID: 39687700 PMCID: PMC11646254 DOI: 10.1007/s12298-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
Collapse
Affiliation(s)
- Sachin Phogat
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Sriharsha V. Lankireddy
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Saikrishna Lekkala
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Varsha C. Anche
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762 USA
| | | | - Gunvant B. Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Naveen Puppala
- New Mexico State University Agricultural Science Center at Clovis, Clovis, 88101 USA
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| |
Collapse
|
3
|
Ponce TP, Bugança MDS, da Silva VS, de Souza RF, Moda-Cirino V, Tomaz JP. Differential Gene Expression in Contrasting Common Bean Cultivars for Drought Tolerance during an Extended Dry Period. Genes (Basel) 2024; 15:935. [PMID: 39062714 PMCID: PMC11276061 DOI: 10.3390/genes15070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Common beans (Phaseolus vulgaris L.), besides being an important source of nutrients such as iron, magnesium, and protein, are crucial for food security, especially in developing countries. Common bean cultivation areas commonly face production challenges due to drought occurrences, mainly during the reproductive period. Dry spells last approximately 20 days, enough time to compromise production. Hence, it is crucial to understand the genetic and molecular mechanisms that confer drought tolerance to improve common bean cultivars' adaptation to drought. Sixty six RNASeq libraries, generated from tolerant and sensitive cultivars in drought time sourced from the R5 phenological stage at 0 to 20 days of water deficit were sequenced, generated over 1.5 billion reads, that aligned to 62,524 transcripts originating from a reference transcriptome, as well as 6673 transcripts obtained via de novo assembly. Differentially expressed transcripts were functionally annotated, revealing a variety of genes associated with molecular functions such as oxidoreductase and transferase activity, as well as biological processes related to stress response and signaling. The presence of regulatory genes involved in signaling cascades and transcriptional control was also highlighted, for example, LEA proteins and dehydrins associated with dehydration protection, and transcription factors such as WRKY, MYB, and NAC, which modulate plant response to water deficit. Additionally, genes related to membrane and protein protection, as well as water and ion uptake and transport, were identified, including aquaporins, RING-type E3 ubiquitin transferases, antioxidant enzymes such as GSTs and CYPs, and thioredoxins. This study highlights the complexity of plant response to water scarcity, focusing on the functional diversity of the genes involved and their participation in the biological processes essential for plant adaptation to water stress. The identification of regulatory and cell protection genes offers promising prospects for genetic improvement aiming at the production of common bean varieties more resistant to drought. These findings have the potential to drive sustainable agriculture, providing valuable insights to ensure food security in a context of climate change.
Collapse
Affiliation(s)
- Talita Pijus Ponce
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Michely da Silva Bugança
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Victória Stern da Silva
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Vânia Moda-Cirino
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| | - Juarez Pires Tomaz
- Curso de Pós-Graduação em Agricultura Conservacionista, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná—IAPAR-Emater, Londrina 86047-902, Brazil
| |
Collapse
|
4
|
Sheela HS, Vennapusa AR, Melmaiee K, Prasad TG, Reddy CP. Pyramiding of transcription factor, PgHSF4, and stress-responsive genes of p68, Pg47, and PsAKR1 impart multiple abiotic stress tolerance in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1233248. [PMID: 37692421 PMCID: PMC10492517 DOI: 10.3389/fpls.2023.1233248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses such as drought, salinity, and heat stress significantly affect rice crop growth and production. Under uncertain climatic conditions, the concurrent multiple abiotic stresses at different stages of rice production became a major challenge for agriculture. Hence, improving rice's multiple abiotic stress tolerance is essential to overcome unprecedented challenges under adverse environmental conditions. A significant challenge for rice breeding programs in improving abiotic stress tolerance involves multiple traits and their complexity. Multiple traits must be targeted to improve multiple stress tolerance in rice and uncover the mechanisms. With this hypothesis, in the present study gene stacking approach is used to integrate multiple traits involved in stress tolerance. The multigene transgenics co-expressing Pennisetum glaucum 47 (Pg47), Pea 68 (p68), Pennisetum glaucum Heat Shock Factor 4(PgHSF4), and Pseudomonas Aldo Keto Reductase 1 (PsAKR1) genes in the rice genotype (AC39020) were developed using the in-planta transformation method. The promising transgenic lines maintained higher yields under semi-irrigated aerobic cultivation (moisture stress). These 15 promising transgenic rice seedlings showed improved shoot and root growth traits under salinity, accelerating aging, temperature, and oxidative stress. They showed better physiological characteristics, such as chlorophyll content, membrane stability, and lower accumulation of reactive oxygen species, under multiple abiotic stresses than wild-type. Enhanced expression of transgenes and other stress-responsive downstream genes such as HSP70, SOD, APX, SOS, PP2C, and P5CS in transgenic lines suggest the possible molecular mechanism for imparting the abiotic stress tolerance. This study proved that multiple genes stacking as a novel strategy induce several mechanisms and responsible traits to overcome multiple abiotic stresses. This multigene combination can potentially improve tolerance to multiple abiotic stress conditions and pave the way for developing climate-resilient crops.
Collapse
Affiliation(s)
- H. S. Sheela
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| | - Amaranatha R. Vennapusa
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - T. G. Prasad
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| | - Chandrashekar P. Reddy
- Department of Crop Physiology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, KA, India
| |
Collapse
|
5
|
Puppala N, Nayak SN, Sanz-Saez A, Chen C, Devi MJ, Nivedita N, Bao Y, He G, Traore SM, Wright DA, Pandey MK, Sharma V. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front Genet 2023; 14:1121462. [PMID: 36968584 PMCID: PMC10030941 DOI: 10.3389/fgene.2023.1121462] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.
Collapse
Affiliation(s)
- Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: Naveen Puppala,
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Mura Jyostna Devi
- USDA-ARS Vegetable Crops Research, Madison, WI, United States
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Nivedita Nivedita
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Yin Bao
- Biosystems Engineering Department, Auburn University, Auburn, AL, United States
| | - Guohao He
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Sy M. Traore
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - David A. Wright
- Department of Biotechnology, Iowa State University, Ames, IA, United States
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
6
|
Mulozi L, Vennapusa AR, Elavarthi S, Jacobs OE, Kulkarni KP, Natarajan P, Reddy UK, Melmaiee K. Transcriptome profiling, physiological, and biochemical analyses provide new insights towards drought stress response in sugar maple ( Acer saccharum Marshall) saplings. FRONTIERS IN PLANT SCIENCE 2023; 14:1150204. [PMID: 37152134 PMCID: PMC10154611 DOI: 10.3389/fpls.2023.1150204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress.
Collapse
Affiliation(s)
- Lungowe Mulozi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
- *Correspondence: Kalpalatha Melmaiee, ; Sathya Elavarthi,
| | - Oluwatomi E. Jacobs
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
- *Correspondence: Kalpalatha Melmaiee, ; Sathya Elavarthi,
| |
Collapse
|