1
|
Gu W, Zhang T, Liu SY, Tian Q, Yang CX, Lu Q, Fu XG, Kates HR, Stull GW, Soltis PS, Soltis DE, Folk RA, Guralnick RP, Li DZ, Yi TS. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae. PLANT DIVERSITY 2024; 46:683-697. [PMID: 39811808 PMCID: PMC11726048 DOI: 10.1016/j.pld.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 01/16/2025]
Abstract
The angiosperm family Elaeagnaceae comprises three genera and ca. 100 species distributed mainly in Eurasia and North America. Little family-wide phylogenetic and biogeographic research on Elaeagnaceae has been conducted, limiting the application and preservation of natural genetic resources. Here, we reconstructed a strongly supported phylogenetic framework of Elaeagnaceae to better understand inter- and intrageneric relationships, as well as the origin and biogeographical history of the family. For this purpose, we used both nuclear and plastid sequences from Hyb-Seq and genome skimming approaches to reconstruct a well-supported phylogeny and, along with current distributional data, infer historical biogeographical processes. Our phylogenetic analyses of both nuclear and plastid data strongly support the monophyly of Elaeagnaceae and each of the three genera. Elaeagnus was resolved as sister to the well-supported clade of Hippophae and Shepherdia. The intrageneric relationships of Elaeagnus and Hippophae were also well resolved. High levels of nuclear gene tree conflict and cytonuclear discordance were detected within Elaeagnus, and our analyses suggest putative ancient and recent hybridization. We inferred that Elaeagnaceae originated at ca. 90.48 Ma (95% CI = 89.91-91.05 Ma), and long-distance dispersal likely played a major role in shaping its intercontinentally disjunct distribution. This work presents the most comprehensive phylogenetic framework for Elaeagnaceae to date, offers new insights into previously unresolved relationships in Elaeagnus, and provides a foundation for further studies on classification, evolution, biogeography, and conservation of Elaeagnaceae.
Collapse
Affiliation(s)
- Wei Gu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Qin Tian
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Chen-Xuan Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Yunnan University, Kunming 650504, Yunnan, China
| | - Qing Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Gang Fu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Heather R. Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - Gregory W. Stull
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
- Department of Biology, University of Florida, Gainesville, FL 32611, United States
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, MS 39762, United States
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
2
|
Lyu R, Xiao J, Li M, Luo Y, He J, Cheng J, Xie L. Phylogeny and Historical Biogeography of the East Asian Clematis Group, Sect. Tubulosae, Inferred from Phylogenomic Data. Int J Mol Sci 2023; 24:3056. [PMID: 36769378 PMCID: PMC9917980 DOI: 10.3390/ijms24033056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
The evolutionary history of Clematis section Tubulosae, an East Asian endemic lineage, has not been comprehensively studied. In this study, we reconstruct the phylogeny of this section with a complete sampling using a phylogenomic approach. The genome skimming method was applied to obtain the complete plastome sequence, the nuclear ribosomal DNA (nrDNA), and the nuclear SNPs data for phylogenetic reconstruction. Using a Bayesian molecular clock approach and ancestral range reconstruction, we reconstruct biogeographical history and discuss the biotic and abiotic factors that may have shaped the distribution patterns of the section. Both nuclear datasets better resolved the phylogeny of the sect. Tubulosae than the plastome sequence. Sect. Tubulosae was resolved as a monophyletic group sister to a clade mainly containing species from the sect. Clematis and sect. Aspidanthera. Within sect. Tubulosae, two major clades were resolved by both nuclear datasets. Two continental taxa, C. heracleifolia and C. tubulosa var. ichangensis, formed one clade. One continental taxon, C. tubulosa, and all the other species from Taiwan island, the Korean peninsula, and the Japanese archipelago formed the other clade. Molecular dating results showed that sect. Tubulosae diverged from its sister clade in the Pliocene, and all the current species diversified during the Pleistocene. Our biogeographical reconstruction suggested that sect. Tubulosae evolved and began species diversification, most likely in mainland China, then dispersed to the Korean peninsula, and then expanded its range through the Japanese archipelago to Taiwan island. Island species diversity may arise through allopatric speciation by vicariance events following the range fragmentation triggered by the climatic oscillation and sea level change during the Pleistocene epoch. Our results highlight the importance of climatic oscillation during the Pleistocene to the spatial-temporal diversification patterns of the sect. Tubulosae.
Collapse
Affiliation(s)
- Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Mingyang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|