1
|
Meng W, Hou X, Cai C, Cao S, Liu L, Wang X, Guo S, Jiang X, Li Y, Yuan Y. Analysis of differentially expressed proteins and related metabolic pathways in response to lead stress in the leaves of Pogonatherum crinitum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117438. [PMID: 39615302 DOI: 10.1016/j.ecoenv.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Proteomics provides an essential means of explaining the mechanisms underlying gene expression regulation. The proteomic mechanisms by which heavy metal hyperaccumulators respond to lead (Pb) stress remain largely unclear. To this end, we examined Pogonatherum crinitum (Thunb.) Kunth and employed proteomic sequencing technology to screen for differential proteins that respond to Pb stress. The connection between Pb-tolerant proteins in metabolic pathways and their functions were analyzed. Differences in the downstream molecules of Pb-resistant proteins in P. crinitum were also assessed. Furthermore, we utilized Parallel Reaction Monitoring (PRM) technology to validate the selected Pb-tolerant differential proteins across various stress concentration gradients. A total of 5275 protein families were identified, and 118 DEPs were observed between the stressed and control groups, including 76 upregulated and 42 downregulated proteins. Functional annotation analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that Pb stress led to the upregulation of 16 proteins within P. crinitum leaves. These proteins were primarily involved in the metabolic processes of energy and carbohydrate metabolism (PcCht1, PcSPS5, PcGME-1, and PcPEP4) as well as protein translation and oxidative stress (PcHSP26.7, PcHSP18, PcCAT3, and PcCAT1). Bioinformatic analysis indicated that DEPs responding to Pb stress were primarily related to the MAPK signaling pathway, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Pathway analysis revealed maltose, acetylcholine, N-acetylglucosamine, and oxalic acid as the downstream products. Moreover, the levels of these indicators all increased with increasing Pb concentrations. PRM of the 16 DEPs revealed that nine proteins were upregulated under different Pb concentrations. PRM and data-independent acquisition results for the upregulation of these nine DEPs were identical, suggesting the reliability of our analytical outcomes. In conclusion, the upregulation of specific proteins in P. crinitum enables the regulation of glucose metabolism and antioxidant balance within the plant and represents a mechanism underlying its Pb stress response.
Collapse
Affiliation(s)
- Weicai Meng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolong Hou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Soil and Water Conservation of Southern Red Soil Region, State Forestry and Grassland Administration, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hilly Ecosystem, Longyan, Changting 364000, China; Co-Innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-Strait, Fuzhou 350002, China.
| | - Cuiting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linghua Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Sciences, Fuzhou 350003, China
| | - Xinyi Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijie Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqi Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Xu Y, Shui X, Gao M, Zhang Y, Zhang Z, Zhu Z, Zhao B, Sun D. Toxicological effects and mechanisms of lithium on growth, photosynthesis and antioxidant system in the freshwater microalga Chromochloris zofingiensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133898. [PMID: 38422737 DOI: 10.1016/j.jhazmat.2024.133898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The growing prevalence of lithium (Li) batteries has drawn public attention to Li as an emerging pollutant. The present study investigates the toxicity of Li+ on Chromochloris zofingiensis, examining physiological, biochemical and omics aspects. Results reveal hormesis effects of Li+ on C. zofingiensis growth. At Li+ concentrations below 5 mg L-1, Li+ can enhance chlorophyll content, mitochondrial activity, and antioxidant capacity, leading to increased dry cell weight and cell number. Conversely, when it exceeded 10 mg L-1, Li+ can reduce chlorophyll content, induce oxidative stress, and disrupt chloroplast and mitochondria structure and function, ultimately impeding cell growth. In addition, under 50 mg L-1 Li+ stress, microalgae optimize absorbed light energy use (increasing Fv/Fm and E TR ) and respond to stress by up-regulating genes in starch and lipid biosynthesis pathways, promoting the accumulation of storage components. Weighted gene co-expression network analysis indicates that peptidylprolyl cis/trans isomerase, GTPase and L-ascorbate oxidase might be the key regulators in response to Li+ stress. This research marks the toxic effects and molecular mechanisms of Li+ on freshwater microalga, which would improve our understanding of Li's toxicology and contributing to the establishment of Li pollution standards.
Collapse
Affiliation(s)
- Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoxi Shui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Min Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yushu Zhang
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|