1
|
Xu X, Zhang X, Fan Y, Zhou H, Pu X. Genome-wide identification and expression analysis of the TCP transcription factor family and its response to abiotic stress in rapeseed ( Brassica napus L.). 3 Biotech 2025; 15:119. [PMID: 40201755 PMCID: PMC11977093 DOI: 10.1007/s13205-025-04273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The study used 80 BnTCP genes (Brassica napus TCP genes) in rapeseed, which were identified and designated with nomenclature based on their chromosomal locations. A systematic analysis encompassed the evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events within these BnTCP genes. These 80 BnTCP proteins were categorized into three subfamilies, with the PCF subfamily showing significant expansion during evolution. Segmental duplications were identified as a major driver of TCP family amplification. To comprehensively assess the evolutionary relationships of the TCP family across diverse plant species, nine comparative genomic maps were constructed, elucidating homologous genes between B. napus and representative monocotyledonous and dicotyledonous plants. In the final phase of the study, the gene expression response characteristics of 15 selected BnTCP genes across various biological processes and stress responses were examined. Noteworthy candidates, including BnTCP28, BnTCP30, and BnTCP76, were identified as potentially crucial in tissue development and environmental stress responses. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04273-x.
Collapse
Affiliation(s)
- Xinrui Xu
- Crop Research Institute of Sichuan Academy of Agricultural Sciences/Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Xin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106 China
| | - Yu Fan
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106 China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, 610041 China
| | - Xiaobin Pu
- Crop Research Institute of Sichuan Academy of Agricultural Sciences/Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| |
Collapse
|
2
|
Guo S, Xu Y, Zhou Y, Liu R, Wang Y, Yao L, Azam SM, Ma H, Liu X, Cao S, Wang K. Systematic Analysis of the Betula platyphylla TCP Gene Family and Its Expression Profile Identifies Potential Key Candidate Genes Involved in Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:880. [PMID: 40265781 PMCID: PMC11944959 DOI: 10.3390/plants14060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
The TCP transcription factor (TF) family is a vital set of plant-specific regulators involved in plant growth, development, and responses to environmental stresses. Despite the extensive research on TCP transcription factors in numerous plant species, the functions they fulfill in Betula platyphylla are still not well understood. In this study, 21 BpTCP genes were identified via genome-wide analysis. Bioinformatics analysis was used to examine the physicochemical properties of these transcription factors, including molecular weight, isoelectric point, chromosomal distribution, and predicted subcellular localization. We expected that most BpTCP transcription factors would be located in the nucleus. Collinearity analysis revealed that gene fragment duplication events played a major role in the evolutionary expansion and diversification of the BpTCP gene family. Promoter analysis identified diverse cis-acting elements in BpTCP, suggesting that they play a role in stress responses, hormonal regulation, and plant growth and development. qRT-PCR analysis showed that BpTCP genes displayed tissue-specific expression patterns in the roots, stems, and leaves, displaying remarkable differences in expression levels when subjected to abiotic stresses, including drought and high- and low-temperature conditions. Notably, BpTCP17 and BpTCP18 showed markedly higher expression levels under multiple stress conditions. Subcellular localization experiments confirmed that both BpTCP17 and BpTCP18 localize in the nucleus, consistent with bioinformatic predictions. These findings emphasize the potential roles of BpTCP17 and BpTCP18 in mediating abiotic stress responses, highlighting their potential as candidate genes for improving stress tolerance in B. platyphylla.
Collapse
Affiliation(s)
- Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Y.X.); (R.L.); (Y.W.)
| | - Yuan Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Y.X.); (R.L.); (Y.W.)
| | - Yi Zhou
- College of Forestry, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Y.X.); (R.L.); (Y.W.)
| | - Yongkang Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Y.X.); (R.L.); (Y.W.)
| | - Ling Yao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Syed Muhammad Azam
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huanhuan Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.M.); (X.L.)
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (H.M.); (X.L.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.G.); (Y.X.); (R.L.); (Y.W.)
| | - Kang Wang
- College of Forestry, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| |
Collapse
|
3
|
Gao T, Zhou X, Han M, Shen Y, Zhang Y, Wu Q, Dan H, Wang T, Ye H, Liu L, Chai M, Wang Y. Identification and expression responses of TCP gene family in Opisthopappus taihangensis under abiotic stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1499244. [PMID: 40115945 PMCID: PMC11922953 DOI: 10.3389/fpls.2025.1499244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
The TCP gene family plays pivotal roles in the development and abiotic stress responses of plants; however, no data has been provided for this gene family in Opisthopappus taihangensis. Based on O. taihangensis genome, 14 TCP genes were identified and divided into two classes (I and II). After tandem and segmental duplication/whole-genome duplication (WGD), more loss and less gain events of OtTCPs occurred, which might be related with the underwent purifying selection during the evolution. The conserved motifs and structures of OtTCP genes contained light response, growth and development, hormone response, and stress-related cis-acting elements. Different OtTCP genes, even duplicated gene pairs, could be expressed in different tissues, which implied that OtTCP genes had diverse function. Among OtTCPs, OtTCP4, 9 and 11 of CYC clade (Class II) presented a relative wide expression pattern with no or one intron. The three TCP genes could be regarded as important candidate factors for O. taihangensis in growth, development and stress response. These results provided some clues and references for the further in-depth exploration of O. taihangensis resistance mechanisms, as well as those of other unique eco-environment plants.
Collapse
Affiliation(s)
- Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Qi Wu
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Haoyuan Dan
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Tingyu Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
4
|
Zhu Y, Niu S, Lin J, Yang H, Zhou X, Wang S, Liu X, Yang Q, Zhang C, Zhuang Y, Cai T, Zhuang W, Chen H. Genome-Wide Identification and Expression Analysis of TCP Transcription Factors Responding to Multiple Stresses in Arachis hypogaea L. Int J Mol Sci 2025; 26:1069. [PMID: 39940846 PMCID: PMC11816611 DOI: 10.3390/ijms26031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING-CELL-FACTOR (TCP) gene family, a plant-specific transcription factor family, plays pivotal roles in various processes such as plant growth and development regulation, hormone crosstalk, and stress responses. However, a comprehensive genome-wide identification and characterization of the TCP gene family in peanut has yet to be fully elucidated. In this study, we conducted a genome-wide search and identified 51 TCP genes (designated as AhTCPs) in peanut, unevenly distributed across 17 chromosomes. These AhTCPs were phylogenetically classified into three subclasses: PCF, CIN, and CYC/TB1. Gene structure analysis of the AhTCPs revealed that most AhTCPs within the same subclade exhibited conserved motifs and domains, as well as similar gene structures. Cis-acting element analysis demonstrated that the AhTCP genes harbored numerous cis-acting elements associated with stress response, plant growth and development, plant hormone response, and light response. Intraspecific collinearity analysis unveiled significant collinear relationships among 32 pairs of these genes. Further collinear evolutionary analysis found that peanuts share 30 pairs, 24 pairs, 33 pairs, and 100 pairs of homologous genes with A. duranensis, A. ipaensis, Arabidopsis thaliana, and Glycine max, respectively. Moreover, we conducted a thorough analysis of the transcriptome expression profiles in peanuts across various tissues, under different hormone treatment conditions, in response to low- and high-calcium treatments, and under low-temperature and drought stress scenarios. The qRT-PCR results were in accordance with the transcriptome expression data. Collectively, these studies have established a solid theoretical foundation for further exploring the biological functions of the TCP gene family in peanuts, providing valuable insights into the regulatory mechanisms of plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Yanting Zhu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Sijie Niu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Jingyi Lin
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Hua Yang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Xun Zhou
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Siwei Wang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Xiaoyan Liu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Qiang Yang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Chong Zhang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Yuhui Zhuang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Tiecheng Cai
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Weijian Zhuang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Hua Chen
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
5
|
Yu L, Ma X, Dai M, Chang Y, Wang N, Zhang J, Zhang M, Yao N, Umar AW, Liu X. Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation. Molecules 2025; 30:254. [PMID: 39860123 PMCID: PMC11767934 DOI: 10.3390/molecules30020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored. Here, we report the comprehensive identification and characterization of 26 safflower TCP genes (CtTCPs), categorized into Class I (PROLIFERATING CELL FACTOR, PCF) and Class II (CINCINNATA and TEOSINTE BRANCHED1/CYCLOIDEA, CIN and CYC/TB1) subfamilies. Comparative phylogenetics, conserved motif, and gene structure analyses revealed a high degree of evolutionary conservation and functional divergence within the gene family. Promoter analyses uncovered light-, hormone-, and stress-responsive cis-elements, underscoring their regulatory potential. Functional insights from qRT-PCR analyses demonstrated dynamic CtTCP expression under abiotic stresses, including abscisic acid (ABA), Methyl Jasmonate (MeJA), Cold, and ultraviolet radiation b (UV-B) treatments. Notably, ABA stress triggered a significant increase in flavonoid accumulation, correlated with the upregulation of key flavonoid biosynthesis genes and select CtTCPs. These findings illuminate the complex regulatory networks underlying safflower's abiotic stress responses and secondary metabolism, offering a molecular framework to enhance crop resilience and metabolic engineering for sustainable agriculture.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Mingran Dai
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Min Zhang
- Monitoring and Testing Center for Ginseng and Antler Products, Ministry of Agriculture and Rural Affairs, Jilin Agriculture University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
6
|
Li D, Li H, Feng H, Qi P, Wu Z. Unveiling kiwifruit TCP genes: evolution, functions, and expression insights. PLANT SIGNALING & BEHAVIOR 2024; 19:2338985. [PMID: 38597293 PMCID: PMC11008546 DOI: 10.1080/15592324.2024.2338985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.
Collapse
Affiliation(s)
- Donglin Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Haibo Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Huimin Feng
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ping Qi
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zhicheng Wu
- College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| |
Collapse
|
7
|
Xu Y, Ma L, Zeng X, Xu Y, Tao X, Fahim AM, Liu L, Wu J, Yang G, Pu Y, Fan T, Wang W, Sun W. Genome-Wide Identification and Analysis of BrTCP Transcription Factor Family Genes Involved in Cold Stress Tolerance in Winter Rapeseed ( Brassica rapa L.). Int J Mol Sci 2024; 25:13592. [PMID: 39769355 PMCID: PMC11678751 DOI: 10.3390/ijms252413592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
TCP transcription factors are important during plant growth and stress responses. However, their role in the cold stress response of Brassica rapa L. remains poorly understood. In this research, we identified the TCPs gene family in B. rapa to learn the features of the BrTCP gene family, functionally annotating the interacting proteins of TCP4 and analyzing their expression levels. Our results illustrated the presence of 19 members of the BrTCPs family in B. rapa, exhibiting molecular weights ranging from 27,367.45 to 59,433.64 Da. All identified proteins were classified as unstable, with isoelectric points ranging from 5.5 to 9.48. Subcellular localization forecasted that TCP proteins were all positioned in the nucleus. The BrTCP gene structure is relatively simple, with only seven members possessing introns, and none of the members contain UTR regions. BrTCPs comprise hormone-, light-, and stress-responsive elements. We found that the frequency of photoresponsive elements was greatest in the promoter region, suggesting that BrTCP genes are regulated by light signals and function synergistically with plant growth and development. In addition, five candidate interaction proteins of BrTCP4 were identified using yeast two-hybrid screening. RNA-Seq and q-PCR analyses of the interacting genes revealed differential expression of BrTCP family genes across various tissues following cold stress. Significant responses were observed under low-temperature stress, drought stress, and rehydration treatment, suggesting that these genes play crucial roles as regulators of the molecular network mechanisms responding to stress. This study enhances our understanding of the BrTCP family and provides significant insights into the stress tolerance mechanisms of B. rapa.
Collapse
Affiliation(s)
- Yanxia Xu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Xiucun Zeng
- College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China;
| | - Yaozhao Xu
- College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China;
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.X.); (X.T.); (A.M.F.); (L.L.); (J.W.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| |
Collapse
|
8
|
He X, Zhang MM, Huang Y, Yu J, Zhao X, Zheng Q, Liu ZJ, Lan S. Genome-Based Identification of the Dof Gene Family in Three Cymbidium Species and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:7662. [PMID: 39062906 PMCID: PMC11277557 DOI: 10.3390/ijms25147662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.
Collapse
Affiliation(s)
- Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Jiali Yu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| |
Collapse
|
9
|
Huang Y, Zheng Q, Zhang MM, He X, Zhao X, Wang L, Lan S, Liu ZJ. Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:6363. [PMID: 38928070 PMCID: PMC11204107 DOI: 10.3390/ijms25126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The GRAS gene family, responsible for encoding transcription factors, serves pivotal functions in plant development, growth, and responses to stress. The exploration of the GRAS gene family within the Orchidaceae has been comparatively limited, despite its identification and functional description in various plant species. This study aimed to conduct a thorough examination of the GRAS gene family in Cymbidum goeringii, focusing on its physicochemical attributes, phylogenetic associations, gene structure, cis-acting elements, and expression profiles under heat stress. The results show that a total of 54 CgGRASs were pinpointed from the genome repository and categorized into ten subfamilies via phylogenetic associations. Assessment of gene sequence and structure disclosed the prevalent existence of the VHIID domain in most CgGRASs, with around 57.41% (31/54) CgGRASs lacking introns. The Ka/Ks ratios of all CgGRASs were below one, indicating purifying selection across all CgGRASs. Examination of cis-acting elements unveiled the presence of numerous elements linked to light response, plant hormone signaling, and stress responsiveness. Furthermore, CgGRAS5 contained the highest quantity of cis-acting elements linked to stress response. Experimental results from RT-qPCR demonstrated notable variations in the expression levels of eight CgGRASs after heat stress conditions, particularly within the LAS, HAM, and SCL4/7 subfamilies. In conclusion, this study revealed the expression pattern of CgGRASs under heat stress, providing reference for further exploration into the roles of CgGRAS transcription factors in stress adaptation.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| |
Collapse
|
10
|
Pan J, Ju Z, Ma X, Duan L, Jia Z. Genome-wide characterization of TCP family and their potential roles in abiotic stress resistance of oat ( Avena sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1382790. [PMID: 38654900 PMCID: PMC11036127 DOI: 10.3389/fpls.2024.1382790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The TCP gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection. Oat (Avena sativa L.), is one of the world's staple grass forages, but no genome-wide analysis of TCP genes and their roles in low-nitrogen stress has been performed. This study identified the oat TCP gene family members using bioinformatics techniques. It analyzed their phylogeny, gene structure analysis, and expression patterns. The results showed that the AsTCP gene family includes 49 members, and most of the AsTCP-encoded proteins are neutral or acidic proteins; the phylogenetic tree classified the AsTCP gene family members into three subfamilies, and each subfamily has different conserved structural domains and functions. In addition, multiple cis-acting elements were detected in the promoter of the AsTCP genes, which were associated with abiotic stress, light response, and hormone response. The 49 AsTCP genes identified from oat were unevenly distributed on 18 oat chromosomes. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that the AsTCP genes had different expression levels in various tissues under low nitrogen stress, which indicated that these genes (such as AsTCP01, AsTCP03, AsTCP22, and AsTCP38) played multiple roles in the growth and development of oat. In conclusion, this study analyzed the AsTCP gene family and their potential functions in low nitrogen stress at the genome-wide level, which lays a foundation for further analysis of the functions of AsTCP genes in oat and provides a theoretical basis for the exploration of excellent stress tolerance genes in oat. This study provides an essential basis for future in-depth studies of the TCP gene family in other oat genera and reveals new research ideas to improve gene utilization.
Collapse
Affiliation(s)
| | | | | | | | - Zhifeng Jia
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, China
| |
Collapse
|
11
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
12
|
Huang Y, Zhao X, Zheng Q, He X, Zhang MM, Ke S, Li Y, Zhang C, Ahmad S, Lan S, Liu ZJ. Genome-Wide Identification of TCP Gene Family in Dendrobium and Their Expression Patterns in Dendrobium chrysotoxum. Int J Mol Sci 2023; 24:14320. [PMID: 37762622 PMCID: PMC10531990 DOI: 10.3390/ijms241814320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Xin He
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (X.Z.); (Q.Z.); (X.H.); (M.-M.Z.); (S.K.); (Y.L.); (C.Z.); (S.A.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Li Y, Li L, Yang J, Niu Z, Liu W, Lin Y, Xue Q, Ding X. Genome-Wide Identification and Analysis of TCP Gene Family among Three Dendrobium Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3201. [PMID: 37765364 PMCID: PMC10538224 DOI: 10.3390/plants12183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Dendrobium orchids, which are among the most well-known species of orchids, are appreciated for their aesthetic appeal across the globe. Furthermore, due to their strict living conditions, they have accumulated high levels of active ingredients, resulting not only in their medicinal value but also in their strong ability to respond to harsh environments. The TCP gene family plays an important role in plant growth and development, and signal transduction. However, these genes have not been systematically investigated in Dendrobium species. In this study, we detected a total of 24, 23, and 14 candidate TCP members in the genome sequences of D. officinale, D. nobile, and D. chrysotoxum, respectively. These genes were classified into three clades on the basis of a phylogenetic analysis. The TCP gene numbers among Dendrobium species were still highly variable due to the independent loss of genes in the CIN clade. However, only three gene duplication events were detected, with only one tandem duplication event (DcTCP9/DcTCP10) in D. chrysotoxum and two pairs of paralogous DoTCP gene duplication events (DoTCP1/DoTCP23 and DoTCP16/DoTCP24) in D. officinale. A total of 25 cis-acting elements of TCPs related to hormone/stress and light responses were detected. Among them, the proportions of hormone response, light response, and stress response elements in D. officinale (100/421, 127/421, and 171/421) were similar to those in D. nobile (83/352, 87/352, and 161/352). Using qRT-PCR to determine their expression patterns under MeJA treatment, four DoTCPs (DoTCP2, DoTCP4, DoTCP6, and DoTCP14) were significantly upregulated under MeJA treatment, which indicates that TCP genes may play important roles in responding to stress. Under ABA treatment, seven DoTCPs (DoTCP3, DoTCP7, DoTCP9, DoTCP11, DoTCP14, DoTCP15, and DoTCP21) were significantly upregulated, indicating that TCP genes may also play an important role in hormone response. Therefore, these results can provide useful information for studying the evolution and function of TCP genes in Dendrobium species.
Collapse
Affiliation(s)
- Yaoting Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (Y.L.); (Y.L.)
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.L.); (J.Y.); (Z.N.); (W.L.)
| |
Collapse
|
14
|
Zou Q, Dong Q, Tian D, Mao L, Cao X, Zhu K. Genome-Wide Analysis of TCP Transcription Factors and Their Expression Pattern Analysis of Rose Plants ( Rosa chinensis). Curr Issues Mol Biol 2023; 45:6352-6364. [PMID: 37623220 PMCID: PMC10453170 DOI: 10.3390/cimb45080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The plant-specific transcription factor TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) gene family plays vital roles in various biological processes, including growth and development, hormone signaling, and stress responses. However, there is a limited amount of information regarding the TCP gene family in roses (Rosa sp.). In this study, we identified 18 TCP genes in the rose genome, which were further classified into two subgroups (Group A and Group B) via phylogenetic analysis. Comprehensive characterization of these TCP genes was performed, including gene structure, motif composition, chromosomal location, and expression profiles. Synteny analysis revealed that a few TCP genes are involved in segmental duplication events, indicating that these genes played an important role in the expansion of the TCP gene family in roses. This suggests that segmental duplication events have caused the evolution of the TCP gene family and may have generated new functions. Our study provides an insight into the evolutionary and functional characteristics of the TCP gene family in roses and lays a foundation for the future exploration of the regulatory mechanisms of TCP genes in plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | - Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (Q.Z.); (Q.D.); (D.T.); (L.M.)
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (Q.Z.); (Q.D.); (D.T.); (L.M.)
| |
Collapse
|
15
|
Advances in Research on the Regulation of Floral Development by CYC-like Genes. Curr Issues Mol Biol 2023; 45:2035-2059. [PMID: 36975501 PMCID: PMC10047570 DOI: 10.3390/cimb45030131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes.
Collapse
|