1
|
Chaudhary P, Bhattacharjee A, Khatri S, Dalal RC, Kopittke PM, Sharma S. Delineating the soil physicochemical and microbiological factors conferring disease suppression in organic farms. Microbiol Res 2024; 289:127880. [PMID: 39236602 DOI: 10.1016/j.micres.2024.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Organic farming utilizes farmyard manure, compost, and organic wastes as sources of nutrients and organic matter. Soil under organic farming exhibits increased microbial diversity, and thus, becomes naturally suppressive to the development of soil-borne pathogens due to the latter's competition with resident microbial communities. Such soils that exhibit resistance to soil-borne phytopathogens are called disease-suppressive soils. Based on the phytopathogen suppression range, soil disease suppressiveness is categorised as specific- or general- disease suppression. Disease suppressiveness can either occur naturally or can be induced by manipulating soil properties, including the microbiome responsible for conferring protection against soil-borne pathogens. While the induction of general disease suppression in agricultural soils is important for limiting pathogenic attacks on crops, the factors responsible for the phenomenon are yet to be identified. Limited efforts have been made to understand the systemic mechanisms involved in developing disease suppression in organically farmed soils. Identifying the critical factors could be useful for inducing disease suppressiveness in conducive soils as a cost-effective alternative to the application of pesticides and fungicides. Therefore, this review examines the soil properties, including microbiota, and assesses indicators related to disease suppression, for the process to be employed as a tactical option to reduce pesticide use in agriculture.
Collapse
Affiliation(s)
- Priya Chaudhary
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ram C Dalal
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter M Kopittke
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shilpi Sharma
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Zhan Y, Wang E, Zhou Y, He G, Lv P, Wang L, Zhou T, Miao X, Chen C, Li Q. Facilitating Effects of Reductive Soil Disinfestation on Soil Health and Physiological Properties of Panax ginseng. MICROBIAL ECOLOGY 2024; 87:54. [PMID: 38512483 PMCID: PMC10957680 DOI: 10.1007/s00248-024-02349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.
Collapse
Affiliation(s)
- Yu Zhan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ergang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guixiang He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengyuan Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lixiang Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyue Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|