1
|
Amjadi Z, Hamzehzarghani H, Rodriguez VM, Huang YJ, Farahbakhsh F. Studying temperature's impact on Brassica napus resistance to identify key regulatory mechanisms using comparative metabolomics. Sci Rep 2024; 14:19865. [PMID: 39191882 PMCID: PMC11350117 DOI: 10.1038/s41598-024-68345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effects of temperature on Brassica napus (canola) resistance to Leptosphaeria maculans (LM), the causal agent of blackleg disease, metabolic profiles of LM infected resistant (R) and susceptible (S) canola cultivars at 21 °C and 28 °C were analyzed. Metabolites were detected in cotyledons of R and S plants at 48- and 120-h post-inoculation with LM using UPLC-QTOF/MS. The mock-inoculated plants were used as controls. Some of the resistance-related specific pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and aminoacyl-tRNA biosynthesis, were down-regulated in S plants but up-regulated in R plants at 21 °C. However, some of these pathways were down-regulated in R plants at 28 °C. Amino acid metabolism, lipid metabolism, alkaloid biosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis were the pathways linked to combined heat and pathogen stresses. By using network analysis and enrichment analysis, these pathways were identified as important. The pathways of carotenoid biosynthesis, pyrimidine metabolism, and lysine biosynthesis were identified as unique mechanisms related to heat stress and may be associated with the breakdown of resistance against the pathogen. The increased susceptibility of R plants at 28 °C resulted in the down-regulation of signal transduction pathway components and compromised signaling, particularly during the later stages of infection. Deactivating LM-specific signaling networks in R plants under heat stress may result in compatible responses and deduction in signaling metabolites, highlighting global warming challenges in crop disease control.
Collapse
Affiliation(s)
- Zahra Amjadi
- Plant Protection Department, Shiraz University, Shiraz, Iran
| | | | - Víctor Manuel Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Farideh Farahbakhsh
- Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education, and Extension Organization (AREEO), Darab, Iran
| |
Collapse
|
2
|
Vasquez-Teuber P, Rouxel T, Mason AS, Soyer JL. Breeding and management of major resistance genes to stem canker/blackleg in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:192. [PMID: 39052130 PMCID: PMC11272824 DOI: 10.1007/s00122-024-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Collapse
Affiliation(s)
- Paula Vasquez-Teuber
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Stotz HU, Ali AM, de Lope LR, Rafi MS, Mitrousia GK, Huang YJ, Fitt BDL. Leptosphaeria maculans isolates with variations in AvrLm1 and AvrLm4 effector genes induce differences in defence responses but not in resistance phenotypes in cultivars carrying the Rlm7 gene. PEST MANAGEMENT SCIENCE 2024; 80:2435-2442. [PMID: 36869585 DOI: 10.1002/ps.7432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The phoma stem canker pathogen Leptosphaeria maculans is one of the most widespread and devastating pathogens of oilseed rape (Brassica napus) in the world. Pathogen colonization is stopped by an interaction of a pathogen Avr effector gene with the corresponding host resistance (R) gene. While molecular mechanisms of this gene-for-gene interaction are being elucidated, understanding of effector function remains limited. The purpose of this study was to determine the action of L. maculans effector (AvrLm) genes on incompatible interactions triggered by B. napus noncorresponding R (Rlm) genes. Specifically, effects of AvrLm4-7 and AvrLm1 on Rlm7-mediated resistance were studied. RESULTS Although there was no major effect on symptom expression, induction of defence genes (e.g. PR1) and accumulation of reactive oxygen species was reduced when B. napus cv. Excel carrying Rlm7 was challenged with a L. maculans isolate containing AvrLm1 and a point mutation in AvrLm4-7 (AvrLm1, avrLm4-AvrLm7) compared to an isolate lacking AvrLm1 (avrLm1, AvrLm4-AvrLm7). AvrLm7-containing isolates, isogenic for presence or absence of AvrLm1, elicited similar symptoms on hosts with or without Rlm7, confirming results obtained with more genetically diverse isolates. CONCLUSION Careful phenotypic examination of isogenic L. maculans isolates and B. napus introgression lines demonstrated a lack of effect of AvrLm1 on Rlm7-mediated resistance despite an apparent alteration of the Rlm7-dependent defence response using more diverse fungal isolates with differences in AvrLm1 and AvrLm4. As deployment of Rlm7 resistance in crop cultivars increases, other effectors need to be monitored because they may alter the predominance of AvrLm7. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Henrik Uwe Stotz
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Ajisa Muthayil Ali
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Lucia Robado de Lope
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Mohammed Sajid Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, PO Box 15551, United Arab Emirates
| | | | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| | - Bruce David Ledger Fitt
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
4
|
Noel K, Wolf IR, Hughes D, Valente GT, Qi A, Huang YJ, Fitt BDL, Stotz HU. Transcriptomics of temperature-sensitive R gene-mediated resistance identifies a WAKL10 protein interaction network. Sci Rep 2024; 14:5023. [PMID: 38424101 PMCID: PMC10904819 DOI: 10.1038/s41598-024-53643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding temperature-sensitivity of R gene-mediated resistance against apoplastic pathogens is important for sustainable food production in the face of global warming. Here, we show that resistance of Brassica napus cotyledons against Leptosphaeria maculans was temperature-sensitive in introgression line Topas-Rlm7 but temperature-resilient in Topas-Rlm4. A set of 1,646 host genes was differentially expressed in Topas-Rlm4 and Topas-Rlm7 in response to temperature. Amongst these were three WAKL10 genes, including BnaA07g20220D, representing the temperature-sensitive Rlm7-1 allele and Rlm4. Network analysis identified a WAKL10 protein interaction cluster specifically for Topas-Rlm7 at 25 °C. Diffusion analysis of the Topas-Rlm4 network identified WRKY22 as a putative regulatory target of the ESCRT-III complex-associated protein VPS60.1, which belongs to the WAKL10 protein interaction community. Combined enrichment analysis of gene ontology terms considering gene expression and network data linked vesicle-mediated transport to defence. Thus, dysregulation of effector-triggered defence in Topas-Rlm7 disrupts vesicle-associated resistance against the apoplastic pathogen L. maculans.
Collapse
Affiliation(s)
- Katherine Noel
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- LS Plant Breeding, North Barn, Manor Farm, Milton Road, Cambridge, CB24 9NG, UK.
| | - Ivan R Wolf
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, 28223, USA
| | - David Hughes
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Guilherme T Valente
- School of Medicine, São Paulo State University - UNESP, Botocatu, SP, 18618687, Brazil
| | - Aiming Qi
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|