1
|
Wei X, Cui X, Yuan F, Zhou K, Zhou L, Zhao C, Guo S, Shang C, Zhang Z. Species delimitation in the Populus laurifolia complex (Salicaceae) based on phylogenetic and morphometric evidence. FRONTIERS IN PLANT SCIENCE 2025; 16:1518122. [PMID: 39980481 PMCID: PMC11839596 DOI: 10.3389/fpls.2025.1518122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025]
Abstract
Due to significant morphological differences and extensive interspecific hybridization, there are numerous species complexes with taxonomic challenges in the genus Populus. Integrative taxonomy, which combines evidence of morphology, molecular phylogeny, niche differentiation, and reproductive isolation, provides the most effective approaches for species delimitation. The Populus laurifolia complex, which belongs to Populus subg. Tacamahaca (Salicaceae), is distributed in the Altai Mountains and Tianshan Mountains. This complex exhibits morphological variability, making species delimitation challenging. Due to limited sampling and systematic studies, its taxonomy has remained unresolved. In this study, 337 specimens, along with online digital samples representing nearly all wild populations, were collected. Morphological analyses were performed to evaluate key traits and clarify species boundaries. Phylogenetic relationships were reconstructed using concatenation and coalescent methods based on 566,375 nuclear single-nucleotide polymorphisms (SNPs). Ecological niche differentiation was assessed, and ABBA-BABA analysis was used to examine interspecific hybridization. The results revealed that this complex, based on a series of significant character states, could be morphologically distinguished into three species-P. laurifolia (Populus pilosa considered a synonym of P. laurifolia), Populus talassica, and Populus pamirica-which also correspond to three well-supported clades in the phylogenetic trees. P. pamirica exhibits some degree of ecological niche differentiation from P. talassica and P. laurifolia, whereas the latter two show minimal differentiation. Gene flow within the complex remains limited. This research underscores the importance of integrating multiple lines of evidence in the classification of Populus, providing a framework for future taxonomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ce Shang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Zhang W, Jin Z, Huang R, Huang W, Li L, He Y, Zhou J, Tian C, Xiao L, Li P, Quan M, Zhang D, Du Q. Multi-omics analysis reveals genetic architecture and local adaptation of coumarins metabolites in Populus. BMC PLANT BIOLOGY 2024; 24:1170. [PMID: 39643871 PMCID: PMC11622574 DOI: 10.1186/s12870-024-05894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Accumulation of coumarins plays key roles in response to immune and abiotic stress in plants, but the genetic adaptation basis of controlling coumarins in perennial woody plants remain unclear. RESULTS We detected 792 SNPs within 334 genes that were significantly associated with the phenotypic variations of 15 single-metabolic traits and multiple comprehensive index, such as principal components (PCs) of coumarins metabolites. Expression quantitative trait locus mapping uncovered that 337 eQTLs associated with the expression levels of 132 associated genes. Selective sweep revealed 55 candidate genes have potential selective signature among three geographical populations, highlighting that the coumarins biosynthesis have been encountered forceful local adaptation. Furthermore, we constructed a genetic network of seven candidate genes that coordinately regulate coumarins biosynthesis, revealing the multiple regulatory patterns affecting coumarins accumulation in Populus tomentosa. Validation of candidate gene variations in a drought-tolerated population and DUF538 heterologous transformation experiments verified the function of candidate genes and their roles in adapting to the different geographical conditions in poplar. CONCLUSIONS Our study uncovered the genetic regulation of the coumarins metabolic biosynthesis of Populus, and offered potential clues for drought-tolerance evaluation and regional improvement in woody plants.
Collapse
Affiliation(s)
- Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Weixiong Huang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Chongde Tian
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
3
|
Luo J, Wang Y, Li Z, Wang Z, Cao X, Wang N. Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource. FORESTRY RESEARCH 2024; 4:e015. [PMID: 39524422 PMCID: PMC11524272 DOI: 10.48130/forres-0024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 04/07/2024] [Indexed: 11/16/2024]
Abstract
Poplar line NL895 can potentially become a model plant for poplar study as it is a widely cultivated elite line. However, the lack of genome resources hindered the use of NL895 as the major plant material in poplar. In this study, we provided a high-quality genome assembly for poplar line NL895 with PacBio single molecule real-time (SMRT) sequencing and High-throughput chromosome conformation capture (Hi-C) technology. The raw assembly of NL895 for the diploid genome included 606 contigs with a total size of ~815 Mb, and the monoploid genome included 246 contigs with a total size of ~412 Mb. The haplotype-resolved chromosomes in the diploid genomes were also generated. All the monoploid, diploid, and haplotype-resolved genomes showed more than 97% completeness and they can largely improve the mapping efficiency in RNA-Seq analysis. By comprehensively comparing the two haplotype genomes we found the heterozygosity of NL895 is much higher than other poplar lines. We also found that NL895 harbors more genomic variants and more gene diversity. The haplotype-specific genes showed higher variable gene expression patterns. These characters would be attributed to the high heterosis of poplar line NL895. The allele-specific expression (ASE) was also investigated and lots of alleles showed biased expressions in different tissues or environmental conditions. Taken together, the genome sequence for NL895 is a valuable tree genomic resource and it would greatly facilitate studies in poplar.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihui Li
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziwei Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212013, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Sericultural Research Institute, Zhenjiang 212013, Jiangsu, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhuang W, Li Y, Shu X, Wang Z, Wang Y, Wang T. Characterization of the complete chloroplast genome of 'Quanhong poplar' ( Populus deltoides W. Bartram ex Humphry Marshall, 2011). Mitochondrial DNA B Resour 2024; 9:285-289. [PMID: 38410200 PMCID: PMC10896124 DOI: 10.1080/23802359.2024.2318391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
The color of the leaves is one of the most important factors for horticultural crops that are considered by breeders, and is also attracting more and more attention from economists and academics. 'Quanhong poplar' (QHP), a rare, bright reddish-purple color-leaf cultivar that has been widely cultivated in China as a landscape tree, is a very precious color-leaf cultivar. In the present study, a reference-based assembly was performed using whole-genome sequencing data to characterize the chloroplast genome of 'QHP'. The total chloroplast genome size of 'QHP' is 156,950 bp, which is divided into two inverted repeat structures of 27,649 bp each, a small single-copy region of 16,563 bp, and a large single-copy region (LSC) of 85,089 bp. From the chloroplast genome, 130 genes have been predicted, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. A chloroplast genome containing 36.68% GC content was detected in 'QHP'. Three SNP sites have been developed between 'QHP' and Populus deltoides Zhonglin 2025. Based on the phylogenetic analysis of chloroplast genomes reported for Populus, the chloroplast of 'QHP' is closest to several strains of Populus deltoides.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yan Wang
- Sishui Bureau of Natural Resources and Planning, Jining, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
5
|
Du W, Wang Y, Xie D, Li E, Bai Y, Shang C, Zhang Z. Phylogenomics reveal Populusgonggaensis as a hybrid between P.lasiocarpa and P.cathayana (Salicaceae). PHYTOKEYS 2024; 237:161-177. [PMID: 38298498 PMCID: PMC10829108 DOI: 10.3897/phytokeys.237.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024]
Abstract
High levels of intra-specific polymorphism and frequent hybridisation make it difficult to define species and correctly apply their scientific names. Populus L. is a challenging genus with plentiful natural and artificial hybrids. This study is a part of the project 'Flora of Pan-Himalaya' and aims to determine the taxonomic identity of P.gonggaensis N. Chao & J.R. He and to find out whether it is of hybrid origin. Whole-genome sequencing data were obtained from 57 samples. The SNP matrix was developed for phylogenetic reconstruction, ABBA-BABA statistics, PCA and ADMIXTURE analysis. The results indicate that P.gonggaensis is a spontaneous hybrid between P.lasiocarpa and P.cathayana. This study points out the importance of SNP data and comprehensive analyses for discovering the potential interspecific hybridisation and clarifies the usage of the name. In addition, the lectotype of P.gonggaensis was designated.
Collapse
Affiliation(s)
- Wenyan Du
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yachao Wang
- School of Life Science, Fudan University, Shanghai 200433, ChinaFudan UniversityShanghaiChina
| | - Dajun Xie
- Sichuan Academy of Forestry, Chengdu 610000, ChinaSichuan Academy of ForestryChengduChina
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yuran Bai
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Ce Shang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
6
|
Saini A, Pandey S. Calonectria populi sp. nov., causing leaf blight of Populus deltoides in India. World J Microbiol Biotechnol 2023; 40:15. [PMID: 37975907 DOI: 10.1007/s11274-023-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Populus deltoides is one of the most favored cash crops in northern India. Thus, accurate identification of pathogens affecting P. deltoides is a critical step in finding or developing effective control measures. In June 2020, symptoms of a leaf blight disease were observed on P. deltoides trees planted at Forest Research Institute, Dehradun, India. Calonectria-like fungal isolates were consistently isolated from the infected leaf samples. Morphological features coupled with phylogenetic analysis of combined partial actin (act), calmodulin (cmdA), histone (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) gene regions of two fungal isolates confirmed a novel species, which is described and illustrated here as Calonectria populi sp. nov. Symptoms similar to those observed in natural conditions were caused by both the isolates on P. deltoides clone AM109 in detached leaf assays and glasshouse inoculation experiments. Finally, Koch's postulates were established by re-isolation and re-identification of the pathogen from the inoculated leaves. This work is the first to confirm a new leaf blight disease of P. deltoides caused by C. populi sp. nov. in India and worldwide.
Collapse
Affiliation(s)
- Aditi Saini
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India.
| |
Collapse
|
7
|
Borkhert EV, Pushkova EN, Nasimovich YA, Kostina MV, Vasilieva NV, Murataev RA, Novakovskiy RO, Dvorianinova EM, Povkhova LV, Zhernova DA, Turba AA, Sigova EA, Snezhkina AV, Kudryavtseva AV, Bolsheva NL, Krasnov GS, Dmitriev AA, Melnikova NV. Sex-determining region complements traditionally used in phylogenetic studies nuclear and chloroplast sequences in investigation of Aigeiros Duby and Tacamahaca Spach poplars (genus Populus L., Salicaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1204899. [PMID: 37860260 PMCID: PMC10582643 DOI: 10.3389/fpls.2023.1204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023]
Abstract
Members of the genus Populus L. play an important role in the formation of forests in the northern hemisphere and are used in urban landscaping and timber production. Populus species of closely related sections show extensive hybridization. Therefore, the systematics of the genus is rather complicated, especially for poplars of hybrid origin. We aimed to assess the efficiency of application of the sex-determining region (SDR) in addition to the nuclear and chloroplast genome loci traditionally used in phylogenetic studies of poplars to investigate relationships in sections Aigeiros Duby and Tacamahaca Spach. Targeted deep sequencing of NTS 5S rDNA, ITS, DSH 2, DSH 5, DSH 8, DSH 12, DSH 29, 6, 15, 16, X18, trnG-psbK-psbI, rps2-rpoC2, rpoC2-rpoC1, as well as SDR and ARR17 gene was performed for 379 poplars. The SDR and ARR17 gene together with traditionally used multicopy and single-copy loci of nuclear and chloroplast DNA allowed us to obtain a clustering that is most consistent with poplar systematics based on morphological data and to shed light on several controversial hypotheses about the origin of the studied taxa (for example, the inexpediency of separating P. koreana, P. maximowiczii, and P. suaveolens into different species). We present a scheme of relationships between species and hybrids of sections Aigeiros and Tacamahaca based on molecular genetic, morphological, and geographical data. The geographical proximity of species and, therefore, the possibility of hybridization between them appear to be more important than the affiliation of species to the same section. We speculate that sections Aigeiros and Tacamahaca are distinguished primarily on an ecological principle (plain and mountain poplars) rather than on a genetic basis. Joint analysis of sequencing data for the SDR and chloroplast genome loci allowed us to determine the ancestors of P. × petrovskoe - P. laurifolia (female tree) × P. × canadensis (male tree), and P. × rasumovskoe - P. nigra (female tree) × P. suaveolens (male tree). Thus, the efficiency of using the SDR for the study of poplars of sections Aigeiros and Tacamahaca and the prospects of its use for the investigation of species of the genus Populus were shown.
Collapse
Affiliation(s)
- Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri A. Nasimovich
- State Environmental Protection Budgetary Institution of Moscow “Mospriroda”, Moscow, Russia
| | - Marina V. Kostina
- Institute of Biology and Chemistry, Moscow Pedagogical State University, Moscow, Russia
| | | | - Ramil A. Murataev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Wang J, Zhang H, Ruhsam M, Fan X, Li X, Chung JM, Chung MY, Chung MG, Wang S, Wang J, Mao K. Phylogeography of Populus koreana reveals an unexpected glacial refugium in Northeast Asia. FORESTRY RESEARCH 2023; 3:23. [PMID: 39526267 PMCID: PMC11524222 DOI: 10.48130/fr-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2024]
Abstract
The genetic structure of temperate plants in the northern hemisphere was significantly influenced by the Quaternary climate oscillations. A species' biological characteristics and ecological niche are significant elements that can affect its phylogeographic history. We adopted the cold-tolerant, anemophilous and anemochorous tree, Populus koreana, as a model species to examine the impact of historical climate changes and biological characteristics on the evolutionary history of vegetation in Northeast Asia throughout the Quaternary period. The results showed that there is moderate genetic differentiation and a lack of phylogeographic structure among populations of P. koreana based on nuclear microsatellite and plastid markers. Demographic analyses and ecological niche modeling suggested that P. koreana is likely to have experienced a bottleneck around the last glacial maximum (LGM), followed by a rapid and continued range expansion coupled with a northward migration from the LGM to the mid-holocene (MH), present, and 2050. Notably, there were several separate refugia present throughout the range of P. koreana in Northeast Asia during the LGM. These include two widely recognized refugia located in the Changbai Mountains and the southern Korean Peninsula. We also unexpectedly found a previously unknown one in the northern Greater Khingan Mountains. Our study contributes to the understanding of the phylogeographic history of plant species in Northeast Asia, providing novel insights into the Greater Khingan Mountains as glacial refugia for a cold-tolerant tree species. These findings provide valuable insights into the Quaternary historical patterns of temperate forests in East Asia.
Collapse
Affiliation(s)
- Ji Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hongying Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Xiaoyan Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xue Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jae Min Chung
- Department of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myong Gi Chung
- Division of Life Science and the Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Shiyang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Zhao X, Li B, Zhai X, Liu H, Deng M, Fan G. Genome-Wide Analysis of Specific PfR2R3-MYB Genes Related to Paulownia Witches' Broom. Genes (Basel) 2022; 14:genes14010007. [PMID: 36672749 PMCID: PMC9858720 DOI: 10.3390/genes14010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Paulownia witches' broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. R2R3-MYB transcription factors (TF) have been reported to be involved in the plant's response to infections caused by these pathogens, but a comprehensive study of the R2R3-MYB genes in Paulownia has not been reported. In this study, we identified 138 R2R3-MYB genes distributed on 20 chromosomes of Paulownia fortunei. These genes were classified into 27 subfamilies based on their gene structures and phylogenetic relationships, which indicated that they have various evolutionary relationships and have undergone rich segmental replication events. We determined the expression patterns of the 138 R2R3-MYB genes of P. fortunei by analyzing the RNA sequencing data and found that PfR2R3-MYB15 was significantly up-regulated in P. fortunei in response to phytoplasma infections. PfR2R3-MYB15 was cloned and overexpressed in Populus trichocarpa. The results show that its overexpression induced branching symptoms. Subsequently, the subcellular localization results showed that PfR2R3-MYB15 was located in the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation experiments showed that PfR2R3-MYB15 interacted with PfTAB2. The analysis of the PfR2R3-MYB15 gene showed that it not only played an important role in plant branching, but also might participate in the biosynthesis of photosystem elements. Our results will provide a foundation for future studies of the R2R3-MYB TF family in Paulownia and other plants.
Collapse
Affiliation(s)
- Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqiao Zhai
- Forestry Academy of Henan, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| |
Collapse
|