1
|
Mallik R, Wcisel DJ, Near TJ, Yoder JA, Dornburg A. Investigating the Impact of Whole-Genome Duplication on Transposable Element Evolution in Teleost Fishes. Genome Biol Evol 2025; 17:evae272. [PMID: 39715451 PMCID: PMC11785729 DOI: 10.1093/gbe/evae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Transposable elements (TEs) can make up more than 50% of any given vertebrate's genome, with substantial variability in TE composition among lineages. TE variation is often linked to changes in gene regulation, genome size, and speciation. However, the role that genome duplication events have played in generating abrupt shifts in the composition of the mobilome over macroevolutionary timescales remains unclear. We investigated the degree to which the teleost genome duplication (TGD) shaped the diversification trajectory of the teleost mobilome. We integrate a new high coverage genome of Polypterus bichir with data from over 100 publicly available actinopterygian genomes to assess the macroevolutionary implications of genome duplication events on TE evolution in teleosts. Our results provide no evidence for a substantial shift in mobilome composition following the TGD event. Instead, the diversity of the teleost mobilome appears to have been shaped by a history of lineage-specific shifts in composition that are not correlated with commonly evoked drivers of diversification such as body size, water column usage, or latitude. Collectively, these results provide additional evidence for an emerging perspective that TGD did not catalyze bursts of diversification and innovation in the actinopterygian mobilome.
Collapse
Affiliation(s)
- Rittika Mallik
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum, Yale University, New Haven, CT, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
2
|
Chen Y, Dougan KE, Nguyen Q, Bhattacharya D, Chan CX. Genome-wide transcriptome analysis reveals the diversity and function of long non-coding RNAs in dinoflagellates. NAR Genom Bioinform 2024; 6:lqae016. [PMID: 38344275 PMCID: PMC10858649 DOI: 10.1093/nargab/lqae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellates are a diverse group of phytoplankton, ranging from harmful bloom-forming microalgae to photosymbionts of coral reefs. Genome-scale data from dinoflagellates reveal atypical genomic features, extensive genomic divergence, and lineage-specific innovation of gene functions. Long non-coding RNAs (lncRNAs), known to regulate gene expression in eukaryotes, are largely unexplored in dinoflagellates. Here, using high-quality genome and transcriptome data, we identified 48039 polyadenylated lncRNAs in three dinoflagellate species: the coral symbionts Cladocopium proliferum and Durusdinium trenchii, and the bloom-forming species, Prorocentrum cordatum. These lncRNAs have fewer introns and lower G+C content than protein-coding sequences; 37 768 (78.6%) are unique with respect to sequence similarity. We classified all lncRNAs based on conserved motifs (k-mers) into distinct clusters, following properties of protein-binding and/or subcellular localisation. Interestingly, 3708 (7.7%) lncRNAs are differentially expressed under heat stress, algal lifestyle, and/or growth phase, and share co-expression patterns with protein-coding genes. Based on inferred triplex interactions between lncRNA and putative promoter regions, we identified 19 460 putative gene targets for 3721 lncRNAs; 907 genes exhibit differential expression under heat stress. These results reveal, for the first time, the diversity of lncRNAs in dinoflagellates and how lncRNAs may regulate gene expression as a heat-stress response in these ecologically important microbes.
Collapse
Affiliation(s)
- Yibi Chen
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Quan Nguyen
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Debashish Bhattacharya
- Rutgers University, Department of Biochemistry and Microbiology, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Shah S, Dougan KE, Chen Y, Lo R, Laird G, Fortuin MDA, Rai SK, Murigneux V, Bellantuono AJ, Rodriguez-Lanetty M, Bhattacharya D, Chan CX. Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates. THE ISME JOURNAL 2024; 18:wrae059. [PMID: 38655774 PMCID: PMC11114475 DOI: 10.1093/ismejo/wrae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gemma Laird
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Subash K Rai
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony J Bellantuono
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Mauricio Rodriguez-Lanetty
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Van Etten J, Stephens TG, Bhattacharya D. A k-mer-Based Approach for Phylogenetic Classification of Taxa in Environmental Genomic Data. Syst Biol 2023; 72:1101-1118. [PMID: 37314057 DOI: 10.1093/sysbio/syad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
In the age of genome sequencing, whole-genome data is readily and frequently generated, leading to a wealth of new information that can be used to advance various fields of research. New approaches, such as alignment-free phylogenetic methods that utilize k-mer-based distance scoring, are becoming increasingly popular given their ability to rapidly generate phylogenetic information from whole-genome data. However, these methods have not yet been tested using environmental data, which often tends to be highly fragmented and incomplete. Here, we compare the results of one alignment-free approach (which utilizes the D2 statistic) to traditional multi-gene maximum likelihood trees in 3 algal groups that have high-quality genome data available. In addition, we simulate lower-quality, fragmented genome data using these algae to test method robustness to genome quality and completeness. Finally, we apply the alignment-free approach to environmental metagenome assembled genome data of unclassified Saccharibacteria and Trebouxiophyte algae, and single-cell amplified data from uncultured marine stramenopiles to demonstrate its utility with real datasets. We find that in all instances, the alignment-free method produces phylogenies that are comparable, and often more informative, than those created using the traditional multi-gene approach. The k-mer-based method performs well even when there are significant missing data that include marker genes traditionally used for tree reconstruction. Our results demonstrate the value of alignment-free approaches for classifying novel, often cryptic or rare, species, that may not be culturable or are difficult to access using single-cell methods, but fill important gaps in the tree of life.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Ishida H, John U, Murray SA, Bhattacharya D, Chan CX. Developing model systems for dinoflagellates in the post-genomic era. JOURNAL OF PHYCOLOGY 2023; 59:799-808. [PMID: 37657822 DOI: 10.1111/jpy.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Dinoflagellates are a diverse group of eukaryotic microbes that are ubiquitous in aquatic environments. Largely photosynthetic, they encompass symbiotic, parasitic, and free-living lineages with a broad spectrum of trophism. Many free-living taxa can produce bioactive secondary metabolites such as biotoxins, some of which cause harmful algal blooms. In contrast, most symbiotic species are crucial for sustaining coral reef health. The year 2023 marked a decade since the first genome data of dinoflagellates became available. The growing genome-scale resources for these taxa are highlighting their remarkable evolutionary and genomic complexities. Here, we discuss the prospect of developing dinoflagellate models using the criteria of accessibility, tractability, resources, research support, and promise. Moving forward in the post-genomic era, we argue for the development of fit-to-purpose models that tailor to specific biological contexts, and that a one-size-fits-all model is inadequate for encapsulating the complex biology, ecology, and evolutionary history of dinoflagellates.
Collapse
Affiliation(s)
- Hisatake Ishida
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| | - Uwe John
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Shauna A Murray
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Shah S, Dougan KE, Chen Y, Bhattacharya D, Chan CX. Gene duplication is the primary driver of intraspecific genomic divergence in coral algal symbionts. Open Biol 2023; 13:230182. [PMID: 37751888 PMCID: PMC10522408 DOI: 10.1098/rsob.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellates in the order Suessiales include the family Symbiodiniaceae, which have essential roles as photosymbionts in corals, and their cold-adapted sister group, Polarella glacialis. These diverse taxa exhibit extensive genomic divergence, although their genomes are relatively small (haploid size < 3 Gbp) when compared with most other free-living dinoflagellates. Different strains of Symbiodiniaceae form symbiosis with distinct hosts and exhibit different regimes of gene expression, but intraspecific whole-genome divergence is poorly understood. Focusing on three Symbiodiniaceae species (the free-living Effrenium voratum and the symbiotic Symbiodinium microadriaticum and Durusdinium trenchii) and the free-living outgroup P. glacialis, for which whole-genome data from multiple isolates are available, we assessed intraspecific genomic divergence with respect to sequence and structure. Our analysis, based on alignment and alignment-free methods, revealed a greater extent of intraspecific sequence divergence in Symbiodiniaceae than in P. glacialis. Our results underscore the role of gene duplication in generating functional innovation, with a greater prevalence of tandemly duplicated single-exon genes observed in the genomes of free-living species than in symbionts. These results demonstrate the remarkable intraspecific genomic divergence in dinoflagellates under the constraint of reduced genome sizes, shaped by genetic duplications and symbiogenesis events during the diversification of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, and Australian Centre for Ecogenomics, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
7
|
de la Fuente R, Díaz-Villanueva W, Arnau V, Moya A. Genomic Signature in Evolutionary Biology: A Review. BIOLOGY 2023; 12:biology12020322. [PMID: 36829597 PMCID: PMC9953303 DOI: 10.3390/biology12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Organisms are unique physical entities in which information is stored and continuously processed. The digital nature of DNA sequences enables the construction of a dynamic information reservoir. However, the distinction between the hardware and software components in the information flow is crucial to identify the mechanisms generating specific genomic signatures. In this work, we perform a bibliometric analysis to identify the different purposes of looking for particular patterns in DNA sequences associated with a given phenotype. This study has enabled us to make a conceptual breakdown of the genomic signature and differentiate the leading applications. On the one hand, it refers to gene expression profiling associated with a biological function, which may be shared across taxa. This signature is the focus of study in precision medicine. On the other hand, it also refers to characteristic patterns in species-specific DNA sequences. This interpretation plays a key role in comparative genomics, identifying evolutionary relationships. Looking at the relevant studies in our bibliographic database, we highlight the main factors causing heterogeneities in genome composition and how they can be quantified. All these findings lead us to reformulate some questions relevant to evolutionary biology.
Collapse
Affiliation(s)
- Rebeca de la Fuente
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
- Correspondence:
| | - Wladimiro Díaz-Villanueva
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
| | - Vicente Arnau
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
| | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish Research Council (CSIC), 46980 Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
8
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Chen Y, Shah S, Dougan KE, van Oppen MJH, Bhattacharya D, Chan CX. Improved Cladocopium goreaui Genome Assembly Reveals Features of a Facultative Coral Symbiont and the Complex Evolutionary History of Dinoflagellate Genes. Microorganisms 2022; 10:microorganisms10081662. [PMID: 36014080 PMCID: PMC9412976 DOI: 10.3390/microorganisms10081662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dinoflagellates of the family Symbiodiniaceae are crucial photosymbionts in corals and other marine organisms. Of these, Cladocopium goreaui is one of the most dominant symbiont species in the Indo-Pacific. Here, we present an improved genome assembly of C. goreaui combining new long-read sequence data with previously generated short-read data. Incorporating new full-length transcripts to guide gene prediction, the C. goreaui genome (1.2 Gb) exhibits a high extent of completeness (82.4% based on BUSCO protein recovery) and better resolution of repetitive sequence regions; 45,322 gene models were predicted, and 327 putative, topologically associated domains of the chromosomes were identified. Comparison with other Symbiodiniaceae genomes revealed a prevalence of repeats and duplicated genes in C. goreaui, and lineage-specific genes indicating functional innovation. Incorporating 2,841,408 protein sequences from 96 taxonomically diverse eukaryotes and representative prokaryotes in a phylogenomic approach, we assessed the evolutionary history of C. goreaui genes. Of the 5246 phylogenetic trees inferred from homologous protein sets containing two or more phyla, 35–36% have putatively originated via horizontal gene transfer (HGT), predominantly (19–23%) via an ancestral Archaeplastida lineage implicated in the endosymbiotic origin of plastids: 10–11% are of green algal origin, including genes encoding photosynthetic functions. Our results demonstrate the utility of long-read sequence data in resolving structural features of a dinoflagellate genome, and highlight how genetic transfer has shaped genome evolution of a facultative symbiont, and more broadly of dinoflagellates.
Collapse
Affiliation(s)
- Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Madeleine J. H. van Oppen
- School of Bioscience, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|