1
|
Zhang ZW, Dang TT, Yang XY, Xie LB, Chen YE, Yuan M, Chen GD, Zeng J, Yuan S. γ-Aminobutyric Acid Alleviates Programmed Cell Death in Two Brassica Species Under Cadmium Stress. Int J Mol Sci 2024; 26:129. [PMID: 39795987 PMCID: PMC11720724 DOI: 10.3390/ijms26010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two Brassica species, oilseed rape (Brassica napus, Bn), and black mustard (Brassica juncea, Bj). We observed that GABA significantly alleviated Cd-induced PCD by enhancing antioxidant systems, inhibiting chromatin condensation in the nucleus, and reducing DNA fragmentation under Cd stress. Moreover, GABA may not only reduce caspase-3-like activity by repressing gene expression, but also regulate transcription of PCD-related genes. Bn showed lower Cd accumulation and lower tolerance, with more pronounced PCD, compared with Bj. Our results provide new insights into the mechanism that GABA enhances Cd tolerance in plants.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Tao-Tao Dang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| |
Collapse
|
2
|
Oubohssaine M, Sbabou L, Aurag J. Potential of the plant growth-promoting rhizobacterium Rhodococcus qingshengii LMR356 in mitigating lead stress impact on Sulla spinosissima L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46002-46022. [PMID: 38980484 DOI: 10.1007/s11356-024-34150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Mining-related lead (Pb) pollution of the soil poses serious hazards to ecosystems and living organisms, including humans. Improved heavy metal phytoremediation efficacy, achieved by using phytostabilizing plants assisted by plant-growth-promoting (PGP) microorganisms, has been presented as an effective strategy for remediating polluted soils. The objective of this research was to examine the response and potential of the plant-growth-promoting bacterium LMR356, a Rhodococcus qingshengii strain isolated from an abandoned mining soil, under lead stress conditions. Compared to non-contaminated culture media, the presence of lead induced a significant decrease in auxin production (from 21.17 to 2.65 μg mL-1) and phosphate solubilization (from 33.60 to 8.22 mg L-1), whereas other PGP traits increased drastically, such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity (from 38.17 to 71.37 nmol mg-1 h-1 α-ketobutyrate), siderophore production (from 69 to 83%), exopolysaccharide production (from 1952.28 to 3637.72 mg mL-1), biofilm formation, and motility. We, therefore, investigated the behavior of Sulla spinosissima L. in the presence or absence of this strain under a variety of experimental conditions. Under hydroponic conditions, Sulla plants showed endurance to varying lead concentrations (500-1000 μM). Inoculation of plants with Rhodococcus qingshengii strain LMR356 enhanced plant tolerance, as demonstrated by the increase in plant biomass (ranging from 14.41 to 79.12%) compared to non-inoculated Pb-stressed and non-stressed control plants. Antioxidant enzyme activities (increasing by -42.71 to 126.8%) and chlorophyll (383.33%) and carotenoid (613.04%) content were also augmented. In addition to its impact on plant lead tolerance, strain LMR356 showed a growth-promoting effect on Sulla plants when cultivated in sterilized non-contaminated sand. Parameters such as plant biomass (16.57%), chlorophyll (24.14%), and carotenoid (30%) contents, as well as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, were all elevated compared to non-inoculated plants. Furthermore, when the same plant species was cultivated in highly polluted soil, inoculation increased plant biomass and improved its physiological properties. These findings demonstrate that LMR356 is a phytobeneficial bacterial strain capable of enhancing Sulla growth under normal conditions and improving its heavy metal tolerance in multi-polluted soils. Thus, it can be considered a promising biofertilizer candidate for growing Sulla spinosissima L. or other selected plants intended for application in restoration and stabilization initiatives aimed at reviving and safeguarding environmentally compromised and polluted soils after mining activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| | - Laila Sbabou
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| |
Collapse
|
3
|
Zhang H, Nie M, Du X, Chen S, Liu H, Wu C, Tang Y, Lei Z, Shi G, Zhao X. Selenium and Bacillus proteolyticus SES increased Cu-Cd-Cr uptake by ryegrass: highlighting the significance of key taxa and soil enzyme activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29113-29131. [PMID: 38568308 DOI: 10.1007/s11356-024-32959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
Many studies have focused their attention on strategies to improve soil phytoremediation efficiency. In this study, a pot experiment was carried out to investigate whether Se and Bacillus proteolyticus SES promote Cu-Cd-Cr uptake by ryegrass. To explore the effect mechanism of Se and Bacillus proteolyticus SES, rhizosphere soil physiochemical properties and rhizosphere soil bacterial properties were determined further. The findings showed that Se and Bacillus proteolyticus SES reduced 23.04% Cu, 36.85% Cd, and 9.85% Cr from the rhizosphere soil of ryegrass. Further analysis revealed that soil pH, organic matter, soil enzyme activities, and soil microbial properties were changed with Se and Bacillus proteolyticus SES application. Notably, rhizosphere key taxa (Bacteroidetes, Actinobacteria, Firmicutes, Patescibacteria, Verrucomicrobia, Chloroflexi, etc.) were significantly enriched in rhizosphere soil of ryegrass, and those taxa abundance were positively correlated with soil heavy metal contents (P < 0.01). Our study also demonstrated that in terms of explaining variations of soil Cu-Cd-Cr content under Se and Bacillus proteolyticus SES treatment, soil enzyme activities (catalase and acid phosphatase) and soil microbe properties showed 42.5% and 12.2% contributions value, respectively. Overall, our study provided solid evidence again that Se and Bacillus proteolyticus SES facilitated phytoextraction of soil Cu-Cd-Cr, and elucidated the effect of soil key microorganism and chemical factor.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization (Nanchang Hangkong University), Nanchang, 330063, China
| | - Hanliang Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, Hebei, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China.
| |
Collapse
|
4
|
Pajuelo E, Flores-Duarte NJ, Navarro-Torre S, Rodríguez-Llorente ID, Mateos-Naranjo E, Redondo-Gómez S, Carrasco López JA. Culturomics and Circular Agronomy: Two Sides of the Same Coin for the Design of a Tailored Biofertilizer for the Semi-Halophyte Mesembryanthemum crystallinum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2545. [PMID: 37447105 DOI: 10.3390/plants12132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
According to the EU, the global consumption of biomass, fossil fuels, metals, and minerals is expected to double by 2050, while waste will increase by 70%. In this context, the Circular Economy Action Plan (CEAP) intends to integrate development and sustainability. In this regard, tailored biofertilizers based on plant growth-promoting bacteria (PGPB) can improve plant yield with fewer inputs. In our project, an autochthonous halophyte of the Andalusian marshes, namely Mesembryanthemum crystallinum, was selected for its interest as a source of pharmaceuticals and nutraceuticals. The aim of this work was to use a culturomics approach for the isolation of specific PGPB and endophytes able to promote plant growth and, eventually, modulate the metabolome of the plant. For this purpose, a specific culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard tryptone soy agar (TSA) and MA in order to obtain two independent collections. A higher number of bacteria were isolated on TSA than in MA (47 vs. 37). All the bacteria were identified, and although some of them were isolated in both media (Pseudomonas, Bacillus, Priestia, Rosellomorea, etc.), either medium allowed the isolation of specific members of the M. crystallinum microbiome such as Leclercia, Curtobacterium, Pantoea, Lysinibacillus, Mesobacillus, Glutamicibacter, etc. Plant growth-promoting properties and extracellular degrading activities of all the strains were determined, and distinct patterns were found in both media. The three best bacteria of each collection were selected in order to produce two different consortia, whose effects on seed germination, root colonization, plant growth and physiology, and metabolomics were analyzed. Additionally, the results of the plant metabolome revealed a differential accumulation of several primary and secondary metabolites with pharmaceutical properties. Overall, the results demonstrated the feasibility of using "low cost media" based on plant biomass to carry out a culturomics approach in order to isolate the most suitable bacteria for biofertilizers. In this way, a circular model is established in which bacteria help plants to grow, and, in turn, a medium based on plant wastes supports bacterial growth at low prices, which is the reason why this approach can be considered within the model of "circular agronomy".
Collapse
Affiliation(s)
- Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Noris J Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - José A Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Flores-Duarte NJ, Pajuelo E, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Redondo-Gómez S, Carrasco López JA. A Culturomics-Based Bacterial Synthetic Community for Improving Resilience towards Arsenic and Heavy Metals in the Nutraceutical Plant Mesembryanthemum crystallinum. Int J Mol Sci 2023; 24:7003. [PMID: 37108166 PMCID: PMC10138511 DOI: 10.3390/ijms24087003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation.
Collapse
Affiliation(s)
- Noris J. Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain; (E.M.-N.); (S.R.-G.)
| | - José A. Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain; (N.J.F.-D.); (S.N.-T.); (I.D.R.-L.)
| |
Collapse
|