1
|
Dong X, Ling J, Li Z, Jiao Y, Zhao J, Yang Y, Mao Z, Xie B, Lai D, Li Y. Insights into the Pathogenic Role of Fusaric Acid in Fusarium oxysporum Infection of Brassica oleracea through the Comparative Transcriptomic, Chemical, and Genetic Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9559-9569. [PMID: 40202285 DOI: 10.1021/acs.jafc.5c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Fusarium, a genus of fungi renowned for its plant-pathogenic capabilities, is capable of producing a myriad of structurally diverse secondary metabolites, among which are phytotoxins that play a significant role in the etiology of plant diseases. The particular strain Fusarium oxysporum f. sp. conglutinans (FOC), known as the instigator of Fusarium wilt in cabbage (Brassica oleracea), has been found to secrete an array of toxins and the identities of which have largely remained elusive. In this study, we evaluated the phytotoxicity of crude extracts from the pathogenic FOC strain (FOCr1) and the nonpathogenic F. oxysporum strain (FOcs20) using the cabbage seed phytotoxicity bioassays. Results showed that the crude extract of FOCr1 significantly inhibited seed germination and seedling elongation. Comparative transcriptome analysis and quantitative real-time PCR (qPCR) revealed higher expression levels of a mycotoxin fusaric acid (FA) biosynthetic gene cluster in FOCr1 under host-like conditions (cabbage medium). High-performance liquid chromatography mass spectrometry (HPLC-MS) analysis detected a higher yield FA in the crude extract of FOCr1 but is absent in the FOcs20 strain. Deleting the key gene FUB8 in FOCr1's FA biosynthetic gene cluster delayed wilt symptoms. Moreover, FA treatment was correlated with an uptick in H2O2 levels within seedlings, underscoring its potential as a virulence amplifier. These results suggest that FA acts as a positive virulence factor in FOC.
Collapse
Affiliation(s)
- Xin Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Jiao
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 653003, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Wang L, He Y, Guo G, Xia X, Dong Y, Zhang Y, Wang Y, Fan X, Wu L, Zhou X, Zhang Z, Li G. Overexpression of plant chitin receptors in wheat confers broad-spectrum resistance to fungal diseases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1047-1063. [PMID: 39306860 DOI: 10.1111/tpj.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024]
Abstract
Wheat (Triticum aestivum L.) is a globally staple crop vulnerable to various fungal diseases, significantly impacting its yield. Plant cell surface receptors play a crucial role in recognizing pathogen-associated molecular patterns (PAMPs) and activating PAMP-triggered immunity, boosting resistance against a wide range of plant diseases. Although the role of plant chitin receptor CERK1 in immune recognition and defense has been established in Arabidopsis and rice, its function and potential agricultural applications in enhancing resistance to crop diseases remain largely unexplored. Here, we identify and characterize TaCERK1 in Triticeae crop wheat, uncovering its involvement in chitin recognition, immune regulation, and resistance to fungal diseases. By a comparative analysis of CERK1 homologs in Arabidopsis and monocot crops, we demonstrate that AtCERK1 in Arabidopsis elicits the most robust immune response. Moreover, we show that overexpressing TaCERK1 and AtCERK1 in wheat confers resistance to multiple fungal diseases, including Fusarium head blight, stripe rust, and powdery mildew. Notably, transgenic wheat lines with moderately expressed AtCERK1 display superior disease resistance and heightened immune responses without adversely affecting growth and yield, compared to TaCERK1 overexpression transgenics. Our findings highlight the significance of plant chitin receptors across diverse plant species and suggest potential strategies for bolstering crop resistance against broad-spectrum diseases in agricultural production through the utilization of plant immune receptors.
Collapse
Affiliation(s)
- Lirong Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 629000, China
- Zhongshan Biological Breeding Laboratory, CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yi He
- Zhongshan Biological Breeding Laboratory, CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ge Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yicong Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhua Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wu
- Zhongshan Biological Breeding Laboratory, CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xinli Zhou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 629000, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Sirangelo TM. Molecular Investigations to Improve Fusarium Head Blight Resistance in Wheat: An Update Focusing on Multi-Omics Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2179. [PMID: 39204615 PMCID: PMC11359810 DOI: 10.3390/plants13162179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Fusarium head blight (FHB) is mainly caused by Fusarium graminearum (Fg) and is a very widespread disease throughout the world, leading to severe damage to wheat with losses in both grain yield and quality. FHB also leads to mycotoxin contamination in the infected grains, being toxic to humans and animals. In spite of the continuous advancements to elucidate more and more aspects of FHB host resistance, to date, our knowledge about the molecular mechanisms underlying wheat defense response to this pathogen is not comprehensive, most likely due to the complex wheat-Fg interaction. Recently, due to climate changes, such as high temperature and heavy rainfall, FHB has become more frequent and severe worldwide, making it even more urgent to completely understand wheat defense mechanisms. In this review, after a brief description of the first wheat immune response to Fg, we discuss, for each FHB resistance type, from Type I to Type V resistances, the main molecular mechanisms involved, the major quantitative trait loci (QTLs) and candidate genes found. The focus is on multi-omics research helping discover crucial molecular pathways for each resistance type. Finally, according to the emerging examined studies and results, a wheat response model to Fg attack, showing the major interactions in the different FHB resistance types, is proposed. The aim is to establish a useful reference point for the researchers in the field interested to adopt an interdisciplinary omics approach.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- Division Biotechnologies and Agroindustry, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
4
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
5
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Hao G, Rhoades NA, McCormick S. Chitin and laminarin additively trigger wheat reactive oxygen species but not resistance to Fusarium head blight. PLANT DIRECT 2023; 7:e538. [PMID: 37854878 PMCID: PMC10580251 DOI: 10.1002/pld3.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Plants respond to fungal infections by activating defense genes including producing reactive oxygen species (ROS). The fungus Fusarium graminearum causes Fusarium head blight (FHB), a serious disease of wheat and barley. FHB results in crop yield loss and contaminates grain with mycotoxins. In a prior study, we discovered that chitin induces tissue-specific ROS burst in wheat. However, it is unknown whether other fungal cell wall components could induce defense response in wheat. Therefore, we evaluated ROS and defense gene responses in different wheat tissues that had been treated with chitin, laminarin, or both. Different ROS patterns were induced in wheat treated with laminarin or chitin. Furthermore, we found that ROS were enhanced in wheat tissues treated with both chitin and laminarin. This study provides novel information for enhancing plat immunity to increase plant resistance.
Collapse
Affiliation(s)
- Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research UnitUSDA, Agricultural Research Service, National Center for Agricultural Utilization ResearchPeoriaIllinoisUSA
| | - Nicholas A. Rhoades
- Mycotoxin Prevention and Applied Microbiology Research UnitUSDA, Agricultural Research Service, National Center for Agricultural Utilization ResearchPeoriaIllinoisUSA
- Mycotoxin Prevention and Applied Microbiology Research UnitOak Ridge Institute for Science and Education, USDA, Agricultural Research Service, National Center for Agricultural Utilization ResearchPeoriaIllinoisUSA
| | - Susan McCormick
- Mycotoxin Prevention and Applied Microbiology Research UnitUSDA, Agricultural Research Service, National Center for Agricultural Utilization ResearchPeoriaIllinoisUSA
| |
Collapse
|
7
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
8
|
Song Q, Xu L, Long W, Guo J, Zhang X. Quality assessment and nutrient uptake and utilization in Luohan pine (Podocarpus macrophyllus) seedlings raised by chitosan spraying in varied LED spectra. PLoS One 2022; 17:e0267632. [PMID: 35482746 PMCID: PMC9049360 DOI: 10.1371/journal.pone.0267632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Target seedling cultivation pursues high quality and nutrient utilization instead of increasing growth and size. Exposure to light-emitting diode (LED) spectra is a well-known approach that can accelerate growing speed in tree seedlings, but it is still unknown whether seedling quality and nutrient utilization would be further improved with exogeneous polymer additives. Luohan pine (Podocarpus macrophyllus) seedlings were exposed to red (red-green-blue lights, 71.7%-13.7%-14.6%), green (26.2%-56.4%-17.4%), and blue (17.8%-33.7%-48.5%) LED-light spectra with half receiving leaf spray by chitosan oligosaccharides (Cos) at a rate of 2 ppm (w/w) and the other half receiving only water. The red-light spectrum promoted height, biomass, nutrient utilization, and quality assessment (DQI) in water-sprayed seedlings. The Cos spray enhanced fine-root growth, protein, and chlorophyll-b contents with elevated nutrient utilization and quality in seedlings in the green-light spectrum. DQI was found to have a positive relationship with phosphorus utilization. In conclusion, although the red-light LED spectrum can promote seedling growth, green light combined with Cos spray is recommended with the aim of maintaining seedling quality and increasing P utilization in Luohan pine seedlings.
Collapse
Affiliation(s)
- Qiyan Song
- Institute of Forest Protection, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liang Xu
- Forest Food Research Institute, Zhejiang Academy of Forestry, Hangzhou, China
- * E-mail: (LX); (WL)
| | - Wei Long
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (LX); (WL)
| | - Jia Guo
- Chengbang Eco-Environment Inc., Hangzhou, China
| | - Xie Zhang
- Institute of Botany, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|