1
|
Wang C, Chen S, Peng F, Zhao Q, Gao J, Zhou L, Zhang G, Shao M. Effects of Nitrogen Application Rate on Nitrogen Uptake and Utilization in Waxy Sorghum Under Waxy Sorghum-Soybean Intercropping Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:1384. [PMID: 40364413 PMCID: PMC12073204 DOI: 10.3390/plants14091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Waxy sorghum-soybean intercropping is a sustainable and intensive farming system in southwest China. However, there is limited knowledge about the effects of intercropped soybean combined with nitrogen application on nitrogen uptake and utilization in waxy sorghum. A two-year (2023 and 2024) field experiment was carried out using a randomized complete block design with three planting patterns and three nitrogen application rates to explore the responses of grain yield formation and nitrogen uptake, accumulation, transportation, metabolism physiology, and utilization of waxy sorghum for intercropped soybean combined with nitrogen application. Planting patterns included sole cropped waxy sorghum (SCW), sole cropped soybean (SCS), and waxy sorghum intercropped with soybean (WSI), and nitrogen application rates included zero nitrogen (N0), medium nitrogen (N1), and high nitrogen (N2). Results showed that the dry matter accumulation amount, nitrogen content, nitrogen accumulation amount, nitrogen transportation amount, nitrogen transportation rate, contribution rate of nitrogen transportation to grains, nitrogen metabolizing enzymes activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, glutamate dehydrogenase, and glutamic-pyruvic transaminase), and active substances contents (including soluble sugar, soluble protein, and free amino acid) in various organs of waxy sorghum among planting patterns and nitrogen application rates were in the order of WSI > SCW and N1 > N2 > N0, respectively. In addition, the nitrogen uptake efficiency, nitrogen agronomy efficiency, nitrogen apparent efficiency, nitrogen recovery efficiency, nitrogen partial factor productivity, and nitrogen contribution rate of waxy sorghum among planting patterns and nitrogen application rates were in the sequence of WSI > SCW and N1 > N2, respectively. The changes in above traits resulted in the WSI-N1 treatment obtaining the highest grain yield (6020.66 kg ha-1 in 2023 and 6159.81 kg ha-1 in 2024), grain weight per spike (65.22 g in 2023 and 64.51 g in 2024), 1000-grain weight (23.14 g in 2023 and 23.18 g in 2024) of waxy sorghum, and land equivalent ratio (1.41 in 2023 and 1.44 in 2024). Overall, waxy sorghum intercropped with soybean combined with medium nitrogen application (220 kg ha-1 for waxy sorghum and 18 kg ha-1 for soybean) can help enhance the nitrogen uptake and utilization of waxy sorghum by improving nitrogen metabolizing enzymes' activities and active substances' contents, thereby promoting its productivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (C.W.); (S.C.); (F.P.); (Q.Z.); (J.G.); (L.Z.); (G.Z.)
| |
Collapse
|
2
|
Yang G, Wang Q, Zhang G, Jiang C, Ma P, Hu Y. Effect of nitrogen and phosphorus application on starch characteristics and quality of rice with different nitrogen efficiency. Front Nutr 2024; 11:1462689. [PMID: 39502873 PMCID: PMC11534870 DOI: 10.3389/fnut.2024.1462689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The application of nitrogen and phosphorus fertilizers is an important factors affecting the quality of rice, and different nitrogen-efficient rice varieties show significant differences in their response to nitrogen and phosphorus application. Methods In this experiment, a low-nitrogen-high efficiency variety (Deyou 4727) and a high-nitrogen-high efficiency variety (Jingyou 781) were selected, and the changes in rice quality and differences in starch structure under nitrogen-phosphorus interaction treatments were determined. Results Appearance, flavor, starch content and thermodynamic properties, endosperm cell arrangement, and starch granule morphology and size were significantly influenced by variety, nitrogen-phosphorus interactions, and their interaction effects. The effect of nitrogen fertilizer on quality was greater than that of phosphorus fertilizer. The whiteness and chalkiness rates of Deyou 4727 first decreased and then increased with increasing nitrogen fertilizer application, wheras the appearance quality of Jingyou 781 increased with increasing nitrogen fertilizer application. Starch crystallinity in Deyou 4727 first increased and then decreased with increasing nitrogen fertilizer application, whereas starch crystallinity in Jingyou 781 increased continuously with increasing nitrogen fertilizer application. The application of phosphorus fertilizer led to an increase in starch crystallinity in both nitrogen-efficient rice varieties, consistent with the response of different rice varieties to nitrogen and phosphorus in terms of appearance and chalkiness. With the increasing application of nitrogen and phosphorus fertilizers, the differences in the physicochemical properties and structure of starch became more significant. Discussion High-nitrogen-efficient rice varieties can significantly improve appearance quality under high nitrogen conditions, and the interactions of medium-high nitrogen and low-medium phosphorus can lead to a significant decrease in starch thermal parameters and retention rate, thus improving rice cooking quality. Low-nitrogen-efficient rice varieties can also improve the quality of rice under low-medium-nitrogen conditions with appropriate application of phosphorus fertilizer.
Collapse
Affiliation(s)
| | | | | | | | - Peng Ma
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
3
|
Zhang S, Xu L, Zheng Q, Hu J, Jiang D, Dai T, Tian Z. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. PLANTA 2024; 259:151. [PMID: 38733553 DOI: 10.1007/s00425-024-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Muhammad I, Ahmad S, Shen W. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production. Int J Mol Sci 2024; 25:4551. [PMID: 38674136 PMCID: PMC11049982 DOI: 10.3390/ijms25084551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| |
Collapse
|
5
|
Khalfalla M, Zsombik L, Nagy R, Győri Z. Promoting the elemental profile of sorghum grain: Driving factors affecting nutritional properties under nitrogen fertilizer conditions. Heliyon 2024; 10:e28759. [PMID: 38601610 PMCID: PMC11004528 DOI: 10.1016/j.heliyon.2024.e28759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Monitoring nitrogen utilization is crucial in agricultural practices, emphasizing the interrelationship between soil health, nutrient management, and human health. The study was conducted to evaluate the impact of N fertilizer on the nutritional characteristics of diverse S. bicolor varieties, namely Alföldi 1, ES Föehn (Lidea Seeds) with a red pericarp, ES Albanus, Albita, and Farmsugro 180 (all white varieties), the study was conducted in sorghum-producing areas where the crop is non-native. Specifically, the study investigated two soil types: loam clay and sandy soil. Furthermore, the respective varieties were grown under N (27% N CAN) fertilizer conditions, involving 60 kg/ha-1 and 120 kg/ha-1 of the treatment rates applied at each experiment site. We measured the specific element concentration in each sample using the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) technology. Certainly, the results demonstrated that the different S. bicolor varieties had unique nutritional characteristics attributed to several factors such as soil type, variety, and treatment, which showed a significance value of (P < 0.05). The findings demonstrated that the treatments had distinct impacts as stimulators and inhibitors for certain elements. Specifically, the application of 120 kg/ha-1 negatively affected the levels of particular elements, such as Ca mg/kg-1, in loam clay and sandy soil. The statistical analysis of trace microelement variance did not show a significance value (P > 0.05) when considering the year factor, which supported the data analysis's reliability and accuracy. In summary, to enhance the nutritional value of sorghum grain and supply nutrient-rich food choices for individuals, consider factors such as fertilizer response, nutrient uptake by grain, element mineral accumulation, and advisory variety. Additional research could enhance the nutritional properties of sorghum to provide the required dietary stuff, such as grain processing, which can render sorghum a proper addition to a healthy and balanced human diet.
Collapse
Affiliation(s)
- Maha Khalfalla
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - László Zsombik
- University of Debrecen, Institutes for Agricultural Research and Educational Farm, Research Institute of Nyíregyháza, Vilmos utca 4-6, 4400, Hungary
| | - Róbert Nagy
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - Zoltán Győri
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| |
Collapse
|
6
|
Li M, Cai Q, Liang Y, Zhao Y, Hao Y, Qin Y, Qiao X, Han Y, Li H. Mapping and Screening of Candidate Gene Regulating the Biomass Yield of Sorghum ( Sorghum bicolor L.). Int J Mol Sci 2024; 25:796. [PMID: 38255870 PMCID: PMC10815252 DOI: 10.3390/ijms25020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Biomass yield is one of the important traits of sorghum, which is greatly affected by leaf morphology. In this study, a lobed-leaf mutant (sblob) was screened and identified, and its F2 inbred segregating line was constructed. Subsequently, MutMap and whole-genome sequencing were employed to identify the candidate gene (sblob1), the locus of which is Sobic.003G010300. Pfam and homologous analysis indicated that sblob1 encodes a Cytochrome P450 protein and plays a crucial role in the plant serotonin/melatonin biosynthesis pathway. Structural and functional changes in the sblob1 protein were elucidated. Hormone measurements revealed that sblob1 regulates both leaf morphology and sorghum biomass through regulation of the melatonin metabolic pathway. These findings provide valuable insights for further research and the enhancement of breeding programs, emphasizing the potential to optimize biomass yield in sorghum cultivation.
Collapse
Affiliation(s)
- Mao Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Qizhe Cai
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yinpei Liang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaofei Zhao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Yaoshan Hao
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yingying Qin
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Xinrui Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030800, China;
| | - Yuanhuai Han
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Hongying Li
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (M.L.); (Q.C.); (Y.L.); (Y.Z.); (Y.H.); (Y.Q.)
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| |
Collapse
|
7
|
Vera Hernández PF, Mendoza Onofre LE, Rosas Cárdenas FDF. Responses of sorghum to cold stress: A review focused on molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1124335. [PMID: 36909409 PMCID: PMC9996117 DOI: 10.3389/fpls.2023.1124335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change has led to the search for strategies to acclimatize plants to various abiotic stressors to ensure the production and quality of crops of commercial interest. Sorghum is the fifth most important cereal crop, providing several uses including human food, animal feed, bioenergy, or industrial applications. The crop has an excellent adaptation potential to different types of abiotic stresses, such as drought, high salinity, and high temperatures. However, it is susceptible to low temperatures compared with other monocotyledonous species. Here, we have reviewed and discussed some of the research results and advances that focused on the physiological, metabolic, and molecular mechanisms that determine sorghum cold tolerance to improve our understanding of the nature of such trait. Questions and opportunities for a comprehensive approach to clarify sorghum cold tolerance or susceptibility are also discussed.
Collapse
Affiliation(s)
- Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| | | | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| |
Collapse
|