1
|
Li X, Yu Q, Yao Z, Li S, Ma L, Su K, Yang G. The Combination of Physiological and Transcriptomic Approaches Reveals New Insights into the Molecular Mechanisms of Leymus chinensis Growth Under Different Shading Intensities. Int J Mol Sci 2025; 26:2730. [PMID: 40141372 PMCID: PMC11942481 DOI: 10.3390/ijms26062730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Leymus chinensis is a grass species in the family Triticeae that is found in the Eurasian grassland region and is known for its outstanding ecological advantages and economic value. However, the increasing adoption of photovoltaic agriculture has modified the light environment for the grass, markedly inhibiting its photosynthesis, growth, and yield. This study used physiological and transcriptomic analyses to investigate the complex response mechanisms of two L. chinensis genotypes (Zhongke No. 3 [Lc3] and Zhongke No. 5 [Lc5]) under shading stress. Growth phenotype analysis revealed the superior growth performance of Lc3 under shading stress, evidenced by enhanced plant height and photosynthetic parameters. Additionally, differentially expressed genes (DEGs) were predominantly enriched in starch and sucrose metabolism and glycolysis/gluconeogenesis pathways, which were the most consistently enriched in both L. chinensis genotypes. However, the flavonoid biosynthesis and galactose metabolism pathways were more enriched in Lc3. Weighted gene co-expression network analysis identified the LcGolS2 gene, which encodes galactinol synthase, as a potential hub gene for resistance to shade stress in comparisons across different cultivars and shading treatments. The use of qRT-PCR analysis further validated the genes involved in these pathways, suggesting that they may play critical roles in regulating the growth and development of L. chinensis under shading conditions. These findings provide new insights into the molecular mechanisms underlying the growth and development of L. chinensis under different shading stress conditions.
Collapse
Affiliation(s)
- Xinru Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Q.Y.); (Z.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China; (S.L.); (L.M.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Qianqian Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Q.Y.); (Z.Y.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Zhongxu Yao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Q.Y.); (Z.Y.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Shuo Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China; (S.L.); (L.M.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Lichao Ma
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China; (S.L.); (L.M.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Kunlong Su
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Q.Y.); (Z.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China; (S.L.); (L.M.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Q.Y.); (Z.Y.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao 266109, China; (S.L.); (L.M.)
- Agricultural Research Institute of Saline and Alkaline Land of Yellow River Delta, Dongying 257000, China
| |
Collapse
|
2
|
Li Y, Wang M, Chen P, Luo K, Lin P, Fu Z, Pu T, Wang X, Yong T, Yang W. Simulation of Defoliation Effects on Relay Strip Intercropping Soybean: Elucidating Foliar Shedding and Leaf-to-Nodule Growth Plasticity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526422 DOI: 10.1111/pce.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/10/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Extensive foliar shedding in monoculture soybeans post-anthesis negatively impacts yield, whereas relay strip intercropping prolongs leaf area duration, enhancing productivity. However, little is known about the causes of leaf shedding in monoculture and its impact on physiological functions and plasticity of source and sink organs, we conducted a 4-year field experiment and leaf-removal simulations in relay intercropped soybeans. Results revealed that monoculture soybeans experienced severe self-shading and defoliation, while relay intercropping maintained better light conditions, supporting higher leaf area, nodule numbers, and carbon allocation. Increasing leaf removal initially increased leaf area but eventually reduced it. Extensive leaf-removal reduced Rubisco and sucrose phosphate synthase (SPS) activity, as well as sucrose, malate, ATP, and energy charge (EC) in nodules, revealing a trade-off between leaf growth and nodule development. Moderate leaf-removal (L30), however, balanced compensation and consumption, increasing total non-structural carbohydrates (TNC) in roots and N and ureide in leaves and pods. Network analysis showed that L30 improved the synergies of functional traits in leaves and nodules, ultimately benefiting overall plant growth and nutrient accumulation in pods. This study elucidates a mechanism of foliar shedding and highlights how relay strip intercropping optimizes source-sink coordination to enhance photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Yiling Li
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Mingyue Wang
- Department of Genetics, College of Life Sciences, Wuhan University/State Key Laboratory of Hybrid Rice/Key Laboratory for Research and Utilization of Heterosis in Indica Rice, The Ministry of Agriculture, Wuhan, Hubei, China
| | - Ping Chen
- Institute of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kai Luo
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Ping Lin
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Zhidan Fu
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Tian Pu
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Xiaochun Wang
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Taiwen Yong
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Luo K, Yuan X, Zuo J, Xue Y, Zhang K, Chen P, Li Y, Lin P, Wang X, Yang W, Flexas J, Yong T. Light recovery after maize harvesting promotes soybean flowering in a maize-soybean relay strip intercropping system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2188-2201. [PMID: 38581688 DOI: 10.1111/tpj.16738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.
Collapse
Affiliation(s)
- Kai Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Xiaoting Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Jia Zuo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Yuanyuan Xue
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Kejing Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Yiling Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Ping Lin
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| |
Collapse
|
4
|
Nasar J, Ahmad M, Gitari H, Tang L, Chen Y, Zhou XB. Maize/soybean intercropping increases nutrient uptake, crop yield and modifies soil physio-chemical characteristics and enzymatic activities in the subtropical humid region based in Southwest China. BMC PLANT BIOLOGY 2024; 24:434. [PMID: 38773357 PMCID: PMC11106902 DOI: 10.1186/s12870-024-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Munir Ahmad
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Li Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Xun-Bo Zhou
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Gu Y, Zheng H, Li S, Wang W, Guan Z, Li J, Mei N, Hu W. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize‒soybean intercropping systems. Sci Rep 2024; 14:9361. [PMID: 38654091 DOI: 10.1038/s41598-024-59916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.
Collapse
Affiliation(s)
- Yan Gu
- Jilin Agricultural University, Changchun, 131008, China
| | - Haoyuan Zheng
- Jilin Agricultural University, Changchun, 131008, China
| | - Shuang Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Wantong Wang
- Jilin Agricultural University, Changchun, 131008, China
| | - Zheyun Guan
- Jilin Academy of Agricultural Sciences, Changchun, 130124, China
| | - Jizhu Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Nan Mei
- Jilin Agricultural University, Changchun, 131008, China.
| | - Wenhe Hu
- Jilin Agricultural University, Changchun, 131008, China.
| |
Collapse
|
6
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Li Z, Lyu X, Li H, Tu Q, Zhao T, Liu J, Liu B. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nat Commun 2024; 15:798. [PMID: 38280892 PMCID: PMC10821915 DOI: 10.1038/s41467-024-45086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Leaf senescence is a crucial trait that has a significant impact on crop quality and yield. Previous studies have demonstrated that light is a key factor in modulating the senescence process. However, the precise mechanism by which plants sense light and control senescence remains largely unknown, particularly in crop species. In this study, we reveal that the reduction in blue light under shading conditions can efficiently induce leaf senescence in soybean. The blue light receptors GmCRY1s rather than GmCRY2s, primarily regulate leaf senescence in response to blue light signals. Our results show that GmCRY1s interact with DELLA proteins under light-activated conditions, stabilizing them and consequently suppressing the transcription of GmWRKY100 to delay senescence. Conversely, LBL reduces the interaction between GmCRY1s and the DELLA proteins, leading to their degradation and premature senescence of leaves. Our findings suggest a GmCRY1s-GmDELLAs-GmWRKY100 regulatory cascade that is involved in mediating LBL-induced leaf senescence in soybean, providing insight into the mechanism of how light signals regulate leaf senescence. Additionally, we generate GmWRKY100 knockout soybeans that show delayed leaf senescence and improved yield under natural field conditions, indicating potential applications in enhancing soybean production by manipulating the leaf senescence trait.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qichao Tu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Wu Y, Chen P, Gong W, Gul H, Zhu J, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. Morphological and physiological variation of soybean seedlings in response to shade. FRONTIERS IN PLANT SCIENCE 2022; 13:1015414. [PMID: 36275582 PMCID: PMC9583947 DOI: 10.3389/fpls.2022.1015414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max) is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 μmol m-2 s-1 and 1,200 μmol m-2 s-1 of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; Jiandebaimaodou, Gongdou 2, and Guixia 3 with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Wanzhuo Gong
- Crop Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hina Gul
- National Center of Industrial Biotechnology (NCIB), PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Junqi Zhu
- Plant and Food Research, Blenheim, New Zealand
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| |
Collapse
|
9
|
Nasar J, Wang GY, Zhou FJ, Gitari H, Zhou XB, Tabl KM, Hasan ME, Ali H, Waqas MM, Ali I, Jahan MS. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2022; 13:1014640. [PMID: 36267939 PMCID: PMC9577300 DOI: 10.3389/fpls.2022.1014640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Maize-soybean intercropping is practiced worldwide because of some of the anticipated advantages such as high crop yield and better utilization of resources (i.e., water, light, nutrients and land). However, the shade of the maize crop has a detrimental effect on the growth and yield of soybean under the maize-soybean intercropping system. Hence, this experiment was conducted to improve the shade tolerance of such soybean crops with optimal nitrogen (N) fertilization combined with foliar application of iron (Fe) and molybdenum (Mo). The treatments comprised five (5) maize-soybean intercropping practices: without fertilizer application (F0), with N fertilizer application (F1), with N fertilizer combined with foliar application of Fe (F2), with N fertilizer coupled with foliar application of Mo (F3) and with N fertilizer combined with foliar application of Fe and Mo (F4). The findings of this study showed that maize-soybean intercropping under F4 treatment had significantly (p< 0.05) increased growth indices such as leaf area (cm2), plant height (cm), stem diameter (mm), stem strength (g pot-1), and internode length (cm) and yield indices (i.e., No of pods plant-1, grain yield (g plant-1), 100-grain weight (g), and biomass dry matter (g plant-1)) of the soybean crop. Moreover, intercropping under F4 treatment enhanced the chlorophyll SPAD values by 26% and photosynthetic activities such as Pn by 30%, gs by 28%, and Tr by 28% of the soybean crops, but reduced its CO2 by 11%. Furthermore, maize-soybean intercropping under F4 treatment showed improved efficiency of leaf chlorophyll florescence parameters of soybean crops such as Fv/Fm (26%), qp (17%), ϕPSII (20%), and ETR (17%), but reduced NPQ (12%). In addition, the rubisco activity and soluble protein content of the soybean crop increased by 18% in maize-soybean intercropping under F4 treatment. Thus, this suggested that intercropping under optimal N fertilization combined with foliar application of Fe and Mo can improve the shade tolerance of soybean crops by regulating their chlorophyll content, photosynthetic activities, and the associated enzymes, thereby enhancing their yield and yield traits.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Gui Yang Wang
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Feng Jue Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Enterprise Development, Kenyatta University, Nairobi, Kenya
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Karim M. Tabl
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Habib Ali
- Khwaja Fareed University of Engineering and Information Technology, Rahim, Yar Khan, Pakistan
| | - Muhammad Mohsin Waqas
- Khwaja Fareed University of Engineering and Information Technology, Rahim, Yar Khan, Pakistan
| | - Izhar Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
10
|
Inter- and Mixed Cropping of Different Varieties Improves High-Temperature Tolerance during Flowering of Summer Maize. SUSTAINABILITY 2022. [DOI: 10.3390/su14126993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Global warming increases the risk of high-temperature injury to maize. Inter- and mixed-cropping of maize varieties with different genotypes is one way to effectively alleviate the high-temperature injury during the flowering period. However, the mitigation effect of different varieties and intercropping modes on high-temperature injury is still unclear. Based on previous years of field production, Denghai 605, which is more sensitive to high temperatures during the flowering period, was determined as the main test variety, and Zhengdan 958, Dedan 5, Weike 702, and Xianyu 335, which have great genotypic differences, were used as auxiliary varieties. The main test varieties and auxiliary varieties were intercropped and mixed cropped, respectively. Plant height, ear height, leaf area index, population light transmittance, ear characteristics, and yield were measured, and the land equivalent ratio (LER) was calculated. The plant height of Denghai 605 intercropped with Zhengdan 958 and Dedan 5 and mixed with Weike 702 and Xianyu 335 decreased significantly. The population light transmittance of the bottom or middle layer in Denghai 605 increased significantly when intercropped with other varieties. The grain number per ear increased significantly under inter- and mixed cropping with Zhengdan 958 and Weike 702. Except under intercropping with Dedan 5, the yield of Denghai 605 increased significantly, by 8.8–28.0%, under inter- and mixed cropping. Under intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702 and Xianyu 335, respectively, the group land equivalent ratio was greater than 1.1, indicating that under the combination of these varieties, inter- and mixed cropping effectively reduced the impact of high temperatures during flowering.
Collapse
|