1
|
Zou Y, Yang W, Zhang R, Xu X. Signatures of local adaptation and maladaptation to future climate in wild Zizania latifolia. Commun Biol 2024; 7:1313. [PMID: 39396070 PMCID: PMC11470956 DOI: 10.1038/s42003-024-07036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Global climate change poses challenges to agricultural production and food security. Assessing the adaptive capacity of crop wild relatives to future climate is important for protecting key germplasm resources and breeding new crops. We performed population genomics, genotype-environment association analyses, and genomic offset assessment of Chinese wild rice, Zizania latifolia, a crop wild relative and potential new grain crop, based on 168 individuals from 42 populations. We found two genetic lineages in Z. latifolia, corresponding to the south and north of its range, that diverged during the Late Pleistocene. We also identified lineage-specific positively selected genes associated with flower development and flowering, seed shattering, pathogen defense response and cold tolerance. We further found that populations from southeastern China are the most maladapted to future climate and should be prioritized for conservation. Our findings provide important clues for leveraging existing genetic diversity to identify important germplasm resources and create climate-resilient crops.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weidong Yang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruxue Zhang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Wu Z, Wang Z, Xie D, Wang H, Zhao A, Wang Y, Wang H, Xu X, Li T, Zhao J. Effects of highland environments on clonal diversity in aquatic plants: An interspecific comparison study on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1040282. [PMID: 36340384 PMCID: PMC9632175 DOI: 10.3389/fpls.2022.1040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Clonal reproduction is one of the most distinctive characteristics of plants and is common and diverse in aquatic macrophytes. The balance between sexual and asexual reproduction is affected by various conditions, especially adverse environments. However, we know little about clonal diversity of aquatic plants under suboptimal conditions, such as at high altitudes, and having this information would help us understand how environmental gradients influence patterns of clonal and genetic variation in freshwater species. The microsatellite data of four aquatic taxa in our previous studies were revisited to estimate clonal and genetic diversity on the Qinghai-Tibetan Plateau. Clonal diversity among different genetic groups was compared. Local environmental features were surveyed. Beta regressions were used to identify the environmental factors that significantly explained clonal diversity for relative taxon. The level of clonal diversity from high to low was Stuckenia filiformis > Hippuris vulgaris > Myriophyllum species > Ranunculus section Batrachium species. A positive correlation between clonal and genetic diversity was identified for all taxa, except H. vulgaris. Clonal diversity was affected by climate in S. filiformis and by the local environment in H. vulgaris. For Myriophyllum spp., low elevation and high sediment nutrition were significant for sexual recruitment. The environmental effects on clonal diversity were not significant in R. sect. Batrachium spp. Clonal diversity of aquatic plants is moderate to high and varies greatly in highlands. The effects of breeding systems and environmental factors on the patterns of clonal variation were identified. Elevational gradients, climates and local conditions play different roles in clonal diversity among relative taxon. Our results highlight the importance of sexual recruitment in alpine aquatic plant populations and the influence of environmental factors on the genetic patterns in freshwater species at local and regional scales.
Collapse
Affiliation(s)
- Zhigang Wu
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhong Wang
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Dong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- The National Wetland Ecosystem Field Station of Taihu Lake, National Forestry Administration, Suzhou, China
| | - Huijun Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiwen Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Science, Tibet University, Lhasa, China
| | - Yalin Wang
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanling Wang
- Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Xinwei Xu
- Department of Ecology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Li
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci Rep 2022; 12:12088. [PMID: 35840607 PMCID: PMC9287324 DOI: 10.1038/s41598-022-16224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
We demonstrate a wide distribution and abundance of hybrids between the river species Ranunculus aquatilis, R. fluitans and R. kauffmannii with the still water species R. circinatus (Batrachium, Ranunculaceae) in rivers of two postglacial landscapes of East Europe, i.e., Lithuania and Central European Russia. The Batrachium species and hybrid diversity is higher in the rivers of Lithuania (4 species and 3 hybrids vs. 2 and 1) and represented mainly by western R. aquatilis, R. fluitans and their hybrids whereas in Central European Russia, the East European species R. kauffmannii and its hybrid are the only dominant forms. Hybrids make up about 3/4 of the studied individuals found in 3/4 of the studied river localities in Lithuania and 1/3 of the individuals found in 1/3 of the localities in Central European Russia. Such extensive hybridization in river Batrachium may have arisen due to the specificity of rivers as open-type ecosystems. It may have been intensified by the transformation of river ecosystems by human activities and the postglacial character of the studied landscapes combined with ongoing climate change. Almost all hybrids of R. aquatilis, R. fluitans and R. kauffmannii originated from unidirectional crossings in which R. circinatus acted as a pollen donor. Such crossings could be driven by higher frequency and abundance of R. circinatus populations as well as by some biological mechanisms. Two hybrids, R. circinatus × R. fluitans and R. circinatus × R. kauffmannii, were formally described as R. × redundans and R. × absconditus. We found a hybrid which most likely originated from additional crossing between R. aquatilis and R. circinatus × R. fluitans.
Collapse
|