1
|
Rai MN, Rhodes B, Jinga S, Kanchupati P, Ross E, Carlson SR, Moose SP. Efficient mutagenesis and genotyping of maize inbreds using biolistics, multiplex CRISPR/Cas9 editing, and Indel-Selective PCR. PLANT METHODS 2025; 21:43. [PMID: 40128730 PMCID: PMC11934539 DOI: 10.1186/s13007-025-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
CRISPR/Cas9 based genome editing has advanced our understanding of a myriad of important biological phenomena. Important challenges to multiplex genome editing in maize include assembly of large complex DNA constructs, few genotypes with efficient transformation systems, and costly/labor-intensive genotyping methods. Here we present an approach for multiplex CRISPR/Cas9 genome editing system that delivers a single compact DNA construct via biolistics to Type I embryogenic calli, followed by a novel efficient genotyping assay to identify desirable editing outcomes. We first demonstrate the creation of heritable mutations at multiple target sites within the same gene. Next, we successfully created individual and stacked mutations for multiple members of a gene family. Genome sequencing found off-target mutations are rare. Multiplex genome editing was achieved for both the highly transformable inbred line H99 and Illinois Low Protein1 (ILP1), a genotype where transformation has not previously been reported. In addition to screening transformation events for deletion alleles by PCR, we also designed PCR assays that selectively amplify deletion or insertion of a single nucleotide, the most common outcome from DNA repair of CRISPR/Cas9 breaks by non-homologous end-joining. The Indel-Selective PCR (IS-PCR) method enabled rapid tracking of multiple edited alleles in progeny populations. The 'end to end' pipeline presented here for multiplexed CRISPR/Cas9 mutagenesis can be applied to accelerate maize functional genomics in a broader diversity of genetic backgrounds.
Collapse
Affiliation(s)
- Maruti Nandan Rai
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Brian Rhodes
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Stephen Jinga
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Praveena Kanchupati
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Edward Ross
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA
| | - Shawn R Carlson
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Stephen P Moose
- Department of Crop Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Champaign, IL, 61801, USA.
| |
Collapse
|
2
|
Goralogia GS, Willig C, Strauss SH. Engineering Agrobacterium for improved plant transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70015. [PMID: 40051182 PMCID: PMC11885899 DOI: 10.1111/tpj.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Outside of a few model systems and selected taxa, the insertion of transgenes and regeneration of modified plants are difficult or impossible. This is a major bottleneck both for biotechnology and scientific research with many important species. Agrobacterium-mediated transformation (AMT) remains the most common approach to insert DNA into plant cells, and is also an important means to stimulate regeneration of organized tissues. However, the strains and transformation methods available today have been largely unchanged since the 1990s. New sources of Agrobacterium germplasm and associated genomic information are available for hundreds of wild strains in public repositories, providing new opportunities for research. Many of these strains contain novel gene variants or arrangements of genes in their T-DNA, potentially providing new tools for strain enhancement. There are also several new techniques for Agrobacterium modification, including base editing, CRISPR-associated transposases, and tailored recombineering, that make the process of domesticating wild strains more precise and efficient. We review the novel germplasm, genomic resources, and new methods available, which together should lead to a renaissance in Agrobacterium research and the generation of many new domesticated strains capable of promoting plant transformation and/or regeneration in diverse plant species.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Chris Willig
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| |
Collapse
|
3
|
Woodhouse MR, Cannon EK, Portwood JL, Gardiner JM, Hayford RK, Haley O, Andorf CM. Tools and Resources at the Maize Genetics and Genomics Database (MaizeGDB). Cold Spring Harb Protoc 2025; 2025:pdb.over108430. [PMID: 39151939 DOI: 10.1101/pdb.over108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The Maize Genetics and Genomics Database (MaizeGDB) is the community resource for maize researchers, offering a suite of tools, informatics resources, and curated data sets to support maize genetics, genomics, and breeding research. Here, we provide an overview of the key resources available at MaizeGDB, including maize genomes, comparative genomics, and pan-genomics tools. This review aims to familiarize users with the range of options available for maize research and highlights the importance of MaizeGDB as a central hub for the maize research community. By providing a detailed snapshot of the database's capabilities, we hope to enable researchers to make use of MaizeGDB's resources, ultimately assisting them to better study the evolution and diversity of maize.
Collapse
Affiliation(s)
- Margaret R Woodhouse
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Ethalinda K Cannon
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - John L Portwood
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Rita K Hayford
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Olivia Haley
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
| | - Carson M Andorf
- Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA
- Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Youngstrom C, Wang K, Lee K. Unlocking regeneration potential: harnessing morphogenic regulators and small peptides for enhanced plant engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17193. [PMID: 39658544 PMCID: PMC11771577 DOI: 10.1111/tpj.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Plant genetic transformation is essential for understanding gene functions and developing improved crop varieties. Traditional methods, often genotype-dependent, are limited by plants' recalcitrance to gene delivery and low regeneration capacity. To overcome these limitations, new approaches have emerged that greatly improve efficiency and genotype flexibility. This review summarizes key strategies recently developed for plant transformation, focusing on groundbreaking technologies enhancing explant- and genotype flexibility. It covers the use of morphogenic regulators (MRs), stem cell-based methods, and in planta transformation methods. MRs, such as maize Babyboom (BBM) with Wuschel2 (WUS2), and GROWTH-REGULATING FACTORs (GRFs) with their cofactors GRF-interacting factors (GIFs), offer great potential for transforming many monocot species, including major cereal crops. Optimizing BBM/WUS2 expression cassettes has further enabled successful transformation and gene editing using seedling leaves as starting material. This technology lowers the barriers for academic laboratories to adopt monocot transformation systems. For dicot plants, tissue culture-free or in planta transformation methods, with or without the use of MRs, are emerging as more genotype-flexible alternatives to traditional tissue culture-based transformation systems. Additionally, the discovery of the local wound signal peptide Regeneration Factor 1 (REF1) has been shown to enhance transformation efficiency by activating wound-induced regeneration pathways in both monocot and dicot plants. Future research may combine these advances to develop truly genotype-independent transformation methods.
Collapse
Affiliation(s)
- Christopher Youngstrom
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| |
Collapse
|
5
|
Fontanet-Manzaneque JB, Haeghebaert J, Aesaert S, Coussens G, Pauwels L, Caño-Delgado AI. Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2076-2088. [PMID: 39527627 DOI: 10.1111/tpj.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.
Collapse
Affiliation(s)
- Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), Barcelona, 08193, Spain
| |
Collapse
|
6
|
Lorenzo CD, Blasco-Escámez D, Beauchet A, Wytynck P, Sanches M, Garcia Del Campo JR, Inzé D, Nelissen H. Maize mutant screens: from classical methods to new CRISPR-based approaches. THE NEW PHYTOLOGIST 2024; 244:384-393. [PMID: 39212458 DOI: 10.1111/nph.20084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mutations play a pivotal role in shaping the trajectory and outcomes of a species evolution and domestication. Maize (Zea mays) has been a major staple crop and model for genetic research for more than 100 yr. With the arrival of site-directed mutagenesis and genome editing (GE) driven by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), maize mutational research is once again in the spotlight. If we combine the powerful physiological and genetic characteristics of maize with the already available and ever increasing toolbox of CRISPR-Cas, prospects for its future trait engineering are very promising. This review aimed to give an overview of the progression and learnings of maize screening studies analyzing forward genetics, natural variation and reverse genetics to focus on recent GE approaches. We will highlight how each strategy and resource has contributed to our understanding of maize natural and induced trait variability and how this information could be used to design the next generation of mutational screenings.
Collapse
Affiliation(s)
- Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - David Blasco-Escámez
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Arthur Beauchet
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Pieter Wytynck
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Matilde Sanches
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Jose Rodrigo Garcia Del Campo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
7
|
Pramanik D, Lee K, Wang K. A simple and efficient method for betalain quantification in RUBY-expressing plant samples. FRONTIERS IN PLANT SCIENCE 2024; 15:1449409. [PMID: 39359623 PMCID: PMC11445021 DOI: 10.3389/fpls.2024.1449409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The RUBY reporter system has demonstrated great potential as a visible marker to monitor gene expression in both transiently and stably transformed plant tissues. Ectopic expression of the RUBY reporter leads to bright red pigmentation in plant tissues that do not naturally accumulate betalain. Unlike traditional visual markers such as β-glucuronidase (GUS), luciferase (LUC), and various fluorescent proteins, the RUBY reporter system does not require sample sacrifice or special equipment for visualizing the gene expression. However, a robust quantitative analysis method for betalain content has been lacking, limiting accurate comparative analyses. In this work, we present a simple and rapid protocol for quantitative evaluation of RUBY expression in transgenic plant tissues. Using this method, we demonstrate that differential RUBY expression can be quantified in transiently transformed leaf tissues, such as agroinfiltrated Nicotiana benthamiana leaves, and in stable transgenic maize tissues, including seeds, leaves, and roots. We found that grinding fresh tissues with a hand grinder and plastic pestle, without the use of liquid nitrogen, is an effective method for rapid betalain extraction. Betalain contents estimated by spectrophotometric and High-Performance Liquid Chromatography (HPLC) analyses were highly consistent, validating that our rapid betalain extraction and quantification method is suitable for comparative analysis. In addition, betalain content was strongly correlated with RUBY expression level in agroinfiltrated N. benthamiana leaves, suggesting that our method can be useful for monitoring transient transformation efficiency in plants. Using our rapid protocol, we quantified varying levels of betalain pigment in N. benthamiana leaves, ranging from 110 to 1066 mg/kg of tissue, and in maize samples, ranging from 15.3 to 1028.7 mg/kg of tissue. This method is expected to streamline comparative studies in plants, providing valuable insights into the effectiveness of various promoters, enhancers, or other regulatory elements used in transgenic constructs.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Bioengineering Center, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Jeong JH, Jeon EY, Hwang MK, Song YJ, Kim JY. Development of super-infective ternary vector systems for enhancing the Agrobacterium-mediated plant transformation and genome editing efficiency. HORTICULTURE RESEARCH 2024; 11:uhae187. [PMID: 39247884 PMCID: PMC11377189 DOI: 10.1093/hr/uhae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Agrobacterium-mediated transformation remains a cornerstone of plant biology, fueling advancements in molecular genetics, new genomic techniques (NGTs), and the biotech industry. However, recalcitrant crops and technical hurdles persist as bottlenecks. The goal was to develop super-infective ternary vector systems that integrate a novel salicylic acid-degrading enzyme, GABA, and ethylene-degrading enzymes, targeting the transformation of crops by neutralizing plant defense system on Agrobacterium. Firstly, both the effect and activity of introducing enzymes were validated in EHA105, an important Agrobacterium strain. Our study demonstrates that all ternary vector (Tv) system variants significantly enhance reporter expression in transient assays with Nicotiana benthamiana and Cannabis sativa. Specifically, incorporating a constitutive virG mutation with novel enzyme combinations increased GFP and RUBY expression in C. sativa by >5-fold and 13-fold, respectively. The Tv system, combined with a geminivirus replicon, markedly boosted GUS gene expression in tomato, enhancing genome editing efficiency. Notably, compared to controls, Tv-VS demonstrated up to 18-fold and 4.5-fold increases in genome editing efficiency in C. sativa and tomato, respectively. Additionally, stable transformation rates in tomato and Arabidopsis improved significantly, with Tv-VS showing a remarkable 2.5-fold increase in transformation efficiency compared to control strains. The research marks notable progress in Agrobacterium-mediated plant transformation. The innovative ternary vectors overcome plant defense mechanisms, enabling genetic manipulation in previously challenging plant species. This development is anticipated to broaden the applications of plant genetic engineering, contributing to advancements in crop genome editing.
Collapse
Affiliation(s)
- Jin-Hee Jeong
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun-Young Jeon
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Ki Hwang
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jae-Yean Kim
- Nulla Bio Inc., 501 Jinjudaero, Jinju 660-701, Republic of Korea
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
10
|
Li J, Pan W, Zhang S, Ma G, Li A, Zhang H, Liu L. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1604-1613. [PMID: 38038993 DOI: 10.1111/tpj.16575] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Sorghum is an important crop for food, forage, wine and biofuel production. To enhance its transformation efficiency without negative developmental by-effects, we investigated the impact of GRF4-GIF1 chimaera and GRF5 on sorghum transformation. Both GRF4-GIF1 and GRF5 effectively improved the transformation efficiency of sorghum and accelerated the transformation process of sorghum to less than 2 months which was not observed when using BBM-WUS. As agrobacterium effectors increase the ability of T-DNA transfer into plant cells, we checked whether ternary vector system can additively enhance sorghum transformation. The combination of GRF4-GIF1 with helper plasmid pVS1-VIR2 achieved the highest transformation efficiency, reaching 38.28%, which is 7.71-fold of the original method. Compared with BBM-WUS, overexpressing GRF4-GIF1 caused no noticeable growth defects in sorghum. We further developed a sorghum CRISPR/Cas9 gene-editing tool based on this GRF4-GIF1/ternary vector system, which achieved an average gene mutation efficiency of 41.36%, and null mutants were created in the T0 generation.
Collapse
Affiliation(s)
- Junpeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuai Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| |
Collapse
|
11
|
Chen S, Fan X, Song M, Yao S, Liu T, Ding W, Liu L, Zhang M, Zhan W, Yan L, Sun G, Li H, Wang L, Zhang K, Jia X, Yang Q, Yang J. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize. PLANT PHYSIOLOGY 2024; 194:902-917. [PMID: 37934825 DOI: 10.1093/plphys/kiad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/16/2023] [Indexed: 11/09/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.
Collapse
Affiliation(s)
- Shizhan Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaocong Fan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaitao Yao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Wusi Ding
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Menglan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghua Sun
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongdan Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Kang Zhang
- Department of Precision Plant Gene Delivery, Genovo Biotechnology Co. Ltd, Tianjin 301700, China
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
13
|
Cowling CL, Dash L, Kelley DR. Roles of auxin pathways in maize biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6989-6999. [PMID: 37493143 PMCID: PMC10690729 DOI: 10.1093/jxb/erad297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Phytohormones play a central role in plant development and environmental responses. Auxin is a classical hormone that is required for organ formation, tissue patterning, and defense responses. Auxin pathways have been extensively studied across numerous land plant lineages, including bryophytes and eudicots. In contrast, our understanding of the roles of auxin in maize morphogenesis and immune responses is limited. Here, we review evidence for auxin-mediated processes in maize and describe promising areas for future research in the auxin field. Several recent transcriptomic and genetic studies have demonstrated that auxin is a key influencer of both vegetative and reproductive development in maize (namely roots, leaves, and kernels). Auxin signaling has been implicated in both maize shoot architecture and immune responses through genetic and molecular analyses of the conserved co-repressor RAMOSA ENHANCER LOCUS2. Polar auxin transport is linked to maize drought responses, root growth, shoot formation, and leaf morphogenesis. Notably, maize has been a key system for delineating auxin biosynthetic pathways and offers many opportunities for future investigations on auxin metabolism. In addition, crosstalk between auxin and other phytohormones has been uncovered through gene expression studies and is important for leaf and root development in maize. Collectively these studies point to auxin as a cornerstone for maize biology that could be leveraged for improved crop resilience and yield.
Collapse
Affiliation(s)
- Craig L Cowling
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Linkan Dash
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
15
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
17
|
Impens L, Lorenzo CD, Vandeputte W, Wytynck P, Debray K, Haeghebaert J, Herwegh D, Jacobs TB, Ruttink T, Nelissen H, Inzé D, Pauwels L. Combining multiplex gene editing and doubled haploid technology in maize. THE NEW PHYTOLOGIST 2023; 239:1521-1532. [PMID: 37306056 PMCID: PMC7614789 DOI: 10.1111/nph.19021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
A major advantage of using CRISPR/Cas9 for gene editing is multiplexing, that is, the simultaneous targeting of many genes. However, primary transformants typically contain hetero-allelic mutations or are genetic mosaic, while genetically stable lines that are homozygous are desired for functional analysis. Currently, a dedicated and labor-intensive effort is required to obtain such higher-order mutants through several generations of genetic crosses and genotyping. We describe the design and validation of a rapid and efficient strategy to produce lines of genetically identical plants carrying various combinations of homozygous edits, suitable for replicated analysis of phenotypical differences. This approach was achieved by combining highly multiplex gene editing in Zea mays (maize) with in vivo haploid induction and efficient in vitro generation of doubled haploid plants using embryo rescue doubling. By combining three CRISPR/Cas9 constructs that target in total 36 genes potentially involved in leaf growth, we generated an array of homozygous lines with various combinations of edits within three generations. Several genotypes show a reproducible 10% increase in leaf size, including a septuple mutant combination. We anticipate that our strategy will facilitate the study of gene families via multiplex CRISPR mutagenesis and the identification of allele combinations to improve quantitative crop traits.
Collapse
Affiliation(s)
- Lennert Impens
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Christian D. Lorenzo
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Wout Vandeputte
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Pieter Wytynck
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Kevin Debray
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Jari Haeghebaert
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Denia Herwegh
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Thomas B. Jacobs
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Tom Ruttink
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Dirk Inzé
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Laurens Pauwels
- department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
18
|
Kang M, Lee K, Ji Q, Grosic S, Wang K. Enhancing Maize Transformation and Targeted Mutagenesis through the Assistance of Non-Integrating Wus2 Vector. PLANTS (BASEL, SWITZERLAND) 2023; 12:2799. [PMID: 37570953 PMCID: PMC10420852 DOI: 10.3390/plants12152799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Efficient genetic transformation is a prerequisite for rapid gene functional analyses and crop trait improvements. We recently demonstrated that new T-DNA binary vectors with NptII/G418 selection and a compatible helper plasmid can efficiently transform maize inbred B104 using our rapid Agrobacterium-mediated transformation method. In this work, we implemented the non-integrating Wuschel2 (Wus2) T-DNA vector method for Agrobacterium-mediated B104 transformation and tested its potential for recalcitrant inbred B73 transformation and gene editing. The non-integrating Wus2 (NIW) T-DNA vector-assisted transformation method uses two Agrobacterium strains: one carrying a gene-of-interest (GOI) construct and the other providing an NIW construct. To monitor Wus2 co-integration into the maize genome, we combined the maize Wus2 expression cassette driven by a strong constitutive promoter with a new visible marker RUBY, which produces the purple pigment betalain. As a GOI construct, we used a previously tested CRISPR-Cas9 construct pKL2359 for Glossy2 gene mutagenesis. When both GOI and NIW constructs were delivered by LBA4404Thy- strain, B104 transformation frequency was significantly enhanced by about two-fold (10% vs. 18.8%). Importantly, we were able to transform a recalcitrant inbred B73 using the NIW-assisted transformation method and obtained three transgene-free edited plants by omitting the selection agent G418. These results suggest that NIW-assisted transformation can improve maize B104 transformation frequency and provide a novel option for CRISPR technology for transgene-free genome editing.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (M.K.); (K.L.)
- Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA; (Q.J.); (S.G.)
- Interdepartmental Plant Biology Major, Iowa State University, Ames, IA 50011, USA
| | - Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (M.K.); (K.L.)
- Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA; (Q.J.); (S.G.)
| | - Qing Ji
- Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA; (Q.J.); (S.G.)
| | - Sehiza Grosic
- Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA; (Q.J.); (S.G.)
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (M.K.); (K.L.)
- Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA; (Q.J.); (S.G.)
| |
Collapse
|
19
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
20
|
Lee K, Kang M, Ji Q, Grosic S, Wang K. New T-DNA binary vectors with NptII selection and RUBY reporter for efficient maize transformation and targeted mutagenesis. PLANT PHYSIOLOGY 2023:kiad231. [PMID: 37070560 DOI: 10.1093/plphys/kiad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, USA
| | - Minjeong Kang
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, USA
- Interdepartmental Plant Biology Major, Iowa State, University, Ames, Iowa, USA
| | - Qing Ji
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, USA
| | - Sehiza Grosic
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
21
|
Transcription Factor ZmNAC20 Improves Drought Resistance by Promoting Stomatal Closure and Activating Expression of Stress-Responsive Genes in Maize. Int J Mol Sci 2023; 24:ijms24054712. [PMID: 36902144 PMCID: PMC10003513 DOI: 10.3390/ijms24054712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Drought is a major environmental threat that limits crop growth, development, and productivity worldwide. Improving drought resistance with genetic engineering methods is necessary to tackle global climate change. It is well known that NAC (NAM, ATAF and CUC) transcription factors play a critical role in coping with drought stress in plants. In this study, we identified an NAC transcription factor ZmNAC20, which regulates drought stress response in maize. ZmNAC20 expression was rapidly upregulated by drought and abscisic acid (ABA). Under drought conditions, the ZmNAC20-overexpressing plants had higher relative water content and survival rate than the wild-type maize inbred B104, suggesting that overexpression of ZmNAC20 improved drought resistance in maize. The detached leaves of ZmNAC20-overexpressing plants lost less water than those of wild-type B104 after dehydration. Overexpression of ZmNAC20 promoted stomatal closure in response to ABA. ZmNAC20 was localized in the nucleus and regulated the expression of many genes involved in drought stress response using RNA-Seq analysis. The study indicated that ZmNAC20 improved drought resistance by promoting stomatal closure and activating the expression of stress-responsible genes in maize. Our findings provide a valuable gene and new clues on improving crop drought resistance.
Collapse
|
22
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
23
|
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. NATURE PLANTS 2023; 9:255-270. [PMID: 36759580 PMCID: PMC9946824 DOI: 10.1038/s41477-022-01338-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 05/28/2023]
Abstract
Transformation in grass species has traditionally relied on immature embryos and has therefore been limited to a few major Poaceae crops. Other transformation explants, including leaf tissue, have been explored but with low success rates, which is one of the major factors hindering the broad application of genome editing for crop improvement. Recently, leaf transformation using morphogenic genes Wuschel2 (Wus2) and Babyboom (Bbm) has been successfully used for Cas9-mediated mutagenesis, but complex genome editing applications, requiring large numbers of regenerated plants to be screened, remain elusive. Here we demonstrate that enhanced Wus2/Bbm expression substantially improves leaf transformation in maize and sorghum, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion. Moreover, using a maize-optimized Wus2/Bbm construct, embryogenic callus and regenerated plantlets were successfully produced in eight species spanning four grass subfamilies, suggesting that this may lead to a universal family-wide method for transformation and genome editing across the Poaceae.
Collapse
Affiliation(s)
- Ning Wang
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Emily Wu
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Ping Che
- Corteva Agriscience, Johnston, IA, USA
| | - Ajith Anand
- Corteva Agriscience, Johnston, IA, USA
- MyFloraDNA, Woodland, CA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lee K, Wang K. Strategies for genotype-flexible plant transformation. Curr Opin Biotechnol 2023; 79:102848. [PMID: 36463838 DOI: 10.1016/j.copbio.2022.102848] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Recent advances in the genome-editing tools have demonstrated a great potential for accelerating functional genomics and crop trait improvements, but the low efficiency and genotype dependence in plant transformation hinder practical applications of such revolutionary tools. Morphogenic transcription factors (MTFs) such as Baby boom, Wuschel2, GROWTH-REGULATING FACTOR5, GROWTH-REGULATING FACTOR4 and its cofactor GRF-INTERACTING FACTOR1, and Wuschel-homeobox 5 related have been shown to greatly enhance plant transformation efficiency and expand the range of amenable species and genotypes. This review will summarize recent advancements in plant transformation technologies with an emphasis on the strategies developed for genotype-flexible transformation methods utilizing MTFs for both monocots and dicot plant species. We highlight several breakthrough studies that demonstrated a wide range of applicability.
Collapse
Affiliation(s)
- Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. Recent advances in crop transformation technologies. NATURE PLANTS 2022; 8:1343-1351. [PMID: 36522447 DOI: 10.1038/s41477-022-01295-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/30/2022] [Indexed: 05/12/2023]
Abstract
Agriculture is experiencing a technological inflection point in its history, while also facing unprecedented challenges posed by human population growth and global climate changes. Key advancements in precise genome editing and new methods for rapid generation of bioengineered crops promise to both revolutionize the speed and breadth of breeding programmes and increase our ability to feed and sustain human population growth. Although genome editing enables targeted and specific modifications of DNA sequences, several existing barriers prevent the widespread adoption of editing technologies for basic and applied research in established and emerging crop species. Inefficient methods for the transformation and regeneration of recalcitrant species and the genotype dependency of the transformation process remain major hurdles. These limitations are frequent in monocotyledonous crops, which alone provide most of the calories consumed by human populations. Somatic embryogenesis and de novo induction of meristems - pluripotent groups of stem cells responsible for plant developmental plasticity - are essential strategies to quickly generate transformed plants. Here we review recent discoveries that are rapidly advancing nuclear transformation technologies and promise to overcome the obstacles that have so far impeded the widespread adoption of genome editing in crop species.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
26
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|