1
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
2
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
3
|
Bozděchová L, Havlová K, Fajkus P, Fajkus J. Analysis of Telomerase RNA Structure in Physcomitrium patens Indicates Functionally Relevant Transitions Between OPEN and CLOSED Conformations. J Mol Biol 2024; 436:168417. [PMID: 38143018 DOI: 10.1016/j.jmb.2023.168417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.
Collapse
Affiliation(s)
- Lucie Bozděchová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Kateřina Havlová
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
4
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang Y, Tateishi-Karimata H, Endoh T, Jin Q, Li K, Fan X, Ma Y, Gao L, Lu H, Wang Z, Cho AE, Yao X, Liu C, Sugimoto N, Guo S, Fu X, Shen Q, Xu G, Herrera-Estrella LR, Fan X. High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs. SCIENCE ADVANCES 2022; 8:eadc9785. [PMID: 36417515 PMCID: PMC9683703 DOI: 10.1126/sciadv.adc9785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Climate change negatively affects crop yield, which hinders efforts to reach agricultural sustainability and food security. Here, we show that a previously unidentified allele of the nitrate transporter gene OsNRT2.3 is required to maintain high yield and high nitrogen use efficiency under high temperatures. We demonstrate that this tolerance to high temperatures in rice accessions harboring the HTNE-2 (high temperature resistant and nitrogen efficient-2) alleles from enhanced translation of the OsNRT2.3b mRNA isoform and the decreased abundance of a unique small RNA (sNRT2.3-1) derived from the 5' untranslated region of OsNRT2.3. sNRT2.3-1 binds to the OsNRT2.3a mRNA in a temperature-dependent manner. Our findings reveal that allelic variation in the 5' untranslated region of OsNRT2.3 leads to an increase in OsNRT2.3b protein levels and higher yield during high-temperature stress. Our results also provide a breeding strategy to produce rice varieties with higher grain yield and lower N fertilizer input suitable for a sustainable agriculture that is resilient against climate change.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kexin Li
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China
| | - Yingjun Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Limin Gao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Lu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Art E. Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- inCerebro Co. Ltd., 8F Nokmyoung Bldg., 8 Teheran-ro10-gil, Gangnam-gu, Seoul 06234, Republic of Korea
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shiwei Guo
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luis Rafael Herrera-Estrella
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación yde Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Mexico
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Corresponding author.
| |
Collapse
|