1
|
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, Shettigar N. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm ( Spodoptera frugiperda [J.E. Smith]) Infestation in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2451. [PMID: 39273935 PMCID: PMC11397220 DOI: 10.3390/plants13172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.
Collapse
Affiliation(s)
- Jayasaravanan Desika
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Sundararajan Juliet Hepziba
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nagesh Patne
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | | | - Rajasekaran Ravikesavan
- Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thurapmohideen Abdul Razak
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Subbiah Srinivasan
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nivedita Shettigar
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad 500030, India
| |
Collapse
|
2
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
3
|
Wang C, Wang W, Zhang S, Chen Y, Zhao Y, Zhu C. Anatomical Changes during Chestnut ( Castanea mollissima BL.) Gall Development Stages Induced by the Gall Wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae). PLANTS (BASEL, SWITZERLAND) 2024; 13:1766. [PMID: 38999606 PMCID: PMC11244437 DOI: 10.3390/plants13131766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
This study delved into the larval development and the morphological and anatomical transformations that occur in the galls of chestnut trees (Castanea mollissima BL.) and are induced by the chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (GWDK) across various stages: initial, growth, differentiation, maturity, and lignification. Chestnut galls in the five development stages were collected. Gall structural characteristics were observed with an anatomical stereomicroscope, and anatomical changes in galls were analyzed with staining and scanning electron microscope techniques. The chestnut gall wasp laid its eggs on young leaves and buds. Chestnut gall wasp parasitism caused plant tissues to form a gall chamber, with parenchyma, protective, and epidermal layers. The development of the gall structure caused by the infestation of the GWDK gall led to the weakening of the reactive oxygen species (ROS) elimination ability of the host. The accumulation of ROS led to cell wall peroxidation, resulting in structural damage and diminished host resistance, and the parenchyma layer exhibited significant nutrient supply and thickening. The thickness of the protective and epidermal layers varied notably across different growth stages. The oviposition of the chestnut gall wasp induced modifications in the original plant tissues, with gall formation being most favorable in young tissues, correlating with the maturity level of the host plant tissues. Variances in the internal structures of the galls primarily stemmed from nutrient supplementation, while those in the external structure were attributed to defensive characteristics. This research contributes a foundational understanding of gall development induced by the chestnut gall wasp in Chinese chestnut, offering valuable insights into the intricate interplay between insect infestation and plant physiology.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yu Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Cancan Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (C.W.); (W.W.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
4
|
Gaudet M, Pollegioni P, Ciolfi M, Mattioni C, Cherubini M, Beritognolo I. Identification of a Unique Genomic Region in Sweet Chestnut ( Castanea sativa Mill.) That Controls Resistance to Asian Chestnut Gall Wasp Dryocosmus kuriphilus Yasumatsu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1355. [PMID: 38794426 PMCID: PMC11125237 DOI: 10.3390/plants13101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The Asian chestnut gall wasp (ACGW) (Hymenoptera Dryocosmus kuriphilus Yasumatsu) is a severe pest of sweet chestnut (Castanea sativa Mill.) with a strong impact on growth and nut production. A comparative field trial in Central Italy, including provenances from Spain, Italy, and Greece, was screened for ACGW infestation over consecutive years. The Greek provenance Hortiatis expressed a high proportion of immune plants and was used to perform a genome-wide association study based on DNA pool sequencing (Pool-GWAS) by comparing two DNA pools from 25 susceptible and 25 resistant plants. DNA pools were sequenced with 50X coverage depth. Sequence reads were aligned to a C. mollissima reference genome and the pools were compared to identify SNPs associated with resistance. Twenty-one significant SNPs were identified and highlighted a small genomic region on pseudochromosome 3 (Chr 3), containing 12 candidate genes of three gene families: Cytochrome P450, UDP-glycosyltransferase, and Rac-like GTP-binding protein. Functional analyses revealed a putative metabolic gene cluster related to saccharide biosynthesis in the genomic regions associated with resistance that could be involved in the production of a toxic metabolite against parasites. The comparison with previous genetic studies confirmed the involvement of Chr 3 in the control of resistance to ACGW.
Collapse
Affiliation(s)
- Muriel Gaudet
- CNR Istituto di Ricerca Sugli Ecosistemi Terrestri IRET, Via Guglielmo Marconi, 2, 05010 Porano, TR, Italy; (P.P.); (M.C.); (C.M.); (M.C.)
| | | | | | | | | | - Isacco Beritognolo
- CNR Istituto di Ricerca Sugli Ecosistemi Terrestri IRET, Via Guglielmo Marconi, 2, 05010 Porano, TR, Italy; (P.P.); (M.C.); (C.M.); (M.C.)
| |
Collapse
|
5
|
Wang W, Wang M, Feng J, Zhang S, Chen Y, Zhao Y, Tian R, Zhu C, Nieuwenhuizen NJ. Terpene Synthase Gene Family in Chinese Chestnut ( Castanea mollissima BL.) Harbors Two Sesquiterpene Synthase Genes Implicated in Defense against Gall Wasp Dryocosmus kuriphilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1571-1581. [PMID: 38206573 DOI: 10.1021/acs.jafc.3c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.
Collapse
Affiliation(s)
- Wu Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Mindy Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| | - Jiao Feng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yuqiang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Cancan Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| |
Collapse
|
6
|
Xiao Y, Xiao C, He X, Yang X, Tong Z, Wang Z, Sun Z, Qiu W. A Novel Non-Specific Lipid Transfer Protein Gene, CmnsLTP6.9, Enhanced Osmotic and Drought Tolerance by Regulating ROS Scavenging and Remodeling Lipid Profiles in Chinese Chestnut ( Castanea mollissima Blume). PLANTS (BASEL, SWITZERLAND) 2023; 12:3916. [PMID: 38005813 PMCID: PMC10675601 DOI: 10.3390/plants12223916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Chestnut (Castanea mollissima Blume) is an important economic tree owing to its tasty fruit and adaptability to environmental stresses, especially drought. Currently, there is limited information about non-specific lipid transfer protein (nsLTP) genes that respond to abiotic stress in chestnuts. Here, a chestnut nsLTP, named CmnsLTP6.9, was identified and analyzed. The results showed that the CmnsLTP6.9 protein localized in the extracellular matrix had two splicing variants (CmnsLTP6.9L and CmnsLTP6.9S). Compared with CmnsLTP6.9L, CmnsLTP6.9S had an 87 bp deletion in the 5'-terminal. Overexpression of CmnsLTP6.9L in Arabidopsis enhanced tolerance to osmotic and drought stress. Upon exposure to osmotic and drought treatment, CmnsLTP6.9L could increase reactive oxygen species (ROS)-scavenging enzyme activity, alleviating ROS damage. However, CmnsLTP6.9S-overexpressing lines showed no significant differences in phenotype, ROS content, and related enzyme activities compared with the wild type (WT) under osmotic and drought treatment. Moreover, lipid metabolism analysis confirmed that, unlike CmnsLTP6.9S, CmnsLTP6.9L mainly altered and upregulated many fatty acyls and glycerophospholipids, which implied that CmnsLTP6.9L and CmnsLTP6.9S played different roles in lipid transference in the chestnut. Taken together, we analyzed the functions of CmnsLTP6.9L and CmnsLTP6.9S, and demonstrated that CmnsLTP6.9L enhanced drought and osmotic stress tolerance through ROS scavenging and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.X.); (C.X.); (X.H.); (X.Y.); (Z.T.); (Z.W.); (Z.S.)
| |
Collapse
|
7
|
Yang J, Ma C, Jia R, Zhang H, Zhao Y, Yue H, Li H, Jiang X. Different responses of two maize cultivars to Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infestation provide insights into their differences in resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1065891. [PMID: 36844097 PMCID: PMC9950569 DOI: 10.3389/fpls.2023.1065891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae), a pest with an amazing appetite, damages many crops and causes great losses, especially maize. Understanding the differences in different maize cultivars' responses to S. frugiperda infestation is very important for revealing the mechanisms involved in the resistance of maize plants to S. frugiperda. In this study, a comparative analysis of two maize cultivars, the common cultivar 'ZD958' and the sweet cultivar 'JG218', was used to investigate their physico-biochemical responses to S. frugiperda infestation by a pot experiment. The results showed that the enzymatic and non-enzymatic defense responses of maize seedlings were rapidly induced by S. frugiperda. Frist, the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of infested maize leaves were significantly increased and then decreased to the level of the control. Furthermore, compared with the control leaves, the puncture force values and the total phenolics, total flavonoids, and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one contents of infested leaves were significantly increased within a certain time. The superoxide dismutase and peroxidase activities of infested leaves were significantly increased in a certain period of time, while the catalase activities decreased significantly and then increased to the control level. The jasmonic acid (JA) levels of infested leaves were significantly improved, whereas the salicylic acid and abscisic acid levels changed less. Signaling genes associated with phytohormones and defensive substances including PAL4, CHS6, BX12, LOX1, and NCED9 were significantly induced at certain time points, especially LOX1. Most of these parameters changed greater in JG218 than in ZD958. Moreover, the larvae bioassay showed that S. frugiperda larvae weighed more on JG218 leaves than those on ZD958 leaves. These results suggested that JG218 was more susceptible to S. frugiperda than ZD958. Our findings will make it easier to develop strategies for controlling S. frugiperda for sustainable maize production and breeding of new maize cultivars with increased resistance to herbivores.
Collapse
Affiliation(s)
- Jinwen Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Changlu Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ru Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanming Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiwang Yue
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Heqin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
8
|
Transcriptomic Analysis to Unravel Potential Pathways and Genes Involved in Pecan ( Carya illinoinensis) Resistance to Pestalotiopsis microspora. Int J Mol Sci 2022; 23:ijms231911621. [PMID: 36232919 PMCID: PMC9570006 DOI: 10.3390/ijms231911621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit black spot (FBS), a fungal disease of pecan (Carya illinoinensis (Wangenh) K. Koch) caused by the pathogen Pestalotiopsis microspora, is a serious disease and poses a critical threat to pecan yield and quality. However, the details of pecan responses to FBS infection at the transcriptional level remain to be elucidated. In present study, we used RNA-Seq to analyze differential gene expression in three pecan cultivars with varied resistance to FBS infection: Xinxuan-4 (X4), Mahan (M), and Wichita (W), which were categorized as having low, mild, and high susceptibility to FBS, respectively. Nine RNA-Seq libraries were constructed, comprising a total of 58.56 Gb of high-quality bases, and 2420, 4380, and 8754 differentially expressed genes (DEGs) with |log2Fold change| ≥ 1 and p-value < 0.05 were identified between M vs. X4, W vs. M, and W vs. X4, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed to further annotate DEGs that were part of specific pathways, which revealed that out of 134 total pathways, MAPK signaling pathway, plant−pathogen interaction, and plant hormone signal transduction were highly enriched. Transcriptomic profiling analysis revealed that 1681 pathogen-related genes (PRGs), including 24 genes encoding WRKY transcription factors, potentially participate in the process of defense against Pestalotiopsis microspora infection in pecan. The correlation of WRKY TFs and PRGs was also performed to reveal the potential interaction networks among disease-resistance/pathogenesis-related genes and WRKY TFs. Expression profiling of nine genes annotated as TIFY, WRKY TF, and disease-resistance protein-related genes was performed using qRT-PCR, and the results were correlated with RNA-Seq data. This study provides valuable information on the molecular basis of pecan−Pestalotiopsis microspora interaction mechanisms and offers a repertoire of candidate genes related to pecan fruit response to FBS infection.
Collapse
|