1
|
Kruppa K, Türkösi E, Holušová K, Kalapos B, Szakács É, Cséplő M, Farkas A, Ivanizs L, Szőke-Pázsi K, Mikó P, Kovács P, Gulyás A, Hidvégi N, Molnár-Láng M, Darkó É, Bartoš J, Gaál E, Molnár I. Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1J vsS Robertsonian translocation linked to multiple stress tolerances in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:13. [PMID: 39724311 PMCID: PMC11671438 DOI: 10.1007/s00122-024-04791-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
KEYMESSAGE GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.
Collapse
Affiliation(s)
- Klaudia Kruppa
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary.
| | - Kateřina Holušová
- Institute for Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic, 779 00
| | - Balázs Kalapos
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Mónika Cséplő
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - András Farkas
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - László Ivanizs
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Andrea Gulyás
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Norbert Hidvégi
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Márta Molnár-Láng
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic, 779 00
| | - Eszter Gaál
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| | - István Molnár
- Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary
| |
Collapse
|
2
|
Gaál E, Farkas A, Türkösi E, Kruppa K, Szakács É, Szőke-Pázsi K, Kovács P, Kalapos B, Darkó É, Said M, Lampar A, Ivanizs L, Valárik M, Doležel J, Molnár I. DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1. PLANT MOLECULAR BIOLOGY 2024; 114:122. [PMID: 39508930 PMCID: PMC11543725 DOI: 10.1007/s11103-024-01520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
Collapse
Affiliation(s)
- Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, 9 Gamma Street, Giza, 12619, Egypt
| | - Adam Lampar
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| |
Collapse
|
3
|
Szőke-Pázsi K, Kruppa K, Tulpová Z, Kalapos B, Türkösi E, Gaál E, Darkó É, Said M, Farkas A, Kovács P, Ivanizs L, Doležel J, Rabanus-Wallace MT, Molnár I, Szakács É. DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1407840. [PMID: 39309182 PMCID: PMC11412823 DOI: 10.3389/fpls.2024.1407840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Collapse
Affiliation(s)
- Kitti Szőke-Pázsi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Balázs Kalapos
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - András Farkas
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - M. Timothy Rabanus-Wallace
- School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - István Molnár
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Éva Szakács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
4
|
Wei Y, Zhang T, Jin Y, Li W, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an adult-plant powdery mildew resistance gene Pm4VL from Dasypyrum villosum chromosome 4V into bread wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1401525. [PMID: 38966140 PMCID: PMC11222578 DOI: 10.3389/fpls.2024.1401525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) seriously threatens wheat production worldwide. It is imperative to identify novel resistance genes from wheat and its wild relatives to control this disease by host resistance. Dasypyrum villosum (2n = 2x = 14, VV) is a relative of wheat and harbors novel genes for resistance against multi-fungal diseases. In the present study, we developed a complete set of new wheat-D. villosum disomic introgression lines through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and molecular markers analysis, including four disomic substitution lines (2n=42) containing respectively chromosomes 1V#6, 2V#6, 3V#6, and 6V#6, and four disomic addition lines (2n=44) containing respectively chromosomes 4V#6, 5V#6, 6V#6 and 7V#6. These lines were subsequently evaluated for their responses to a mixture Bgt isolates at both seedling and adult-plant stages. Results showed that introgression lines containing chromosomes 3V#6, 5V#6, and 6V#6 exhibited resistance at both seedling and adult-plant stages, whereas the chromosome 4V#6 disomic addition line NAU4V#6-1 exhibited a high level of adult plant resistance to powdery mildew. Moreover, two translocation lines were further developed from the progenies of NAU4V#6-1 and the Ph1b mutation line NAU0686-ph1b. They were T4DL·4V#6S whole-arm translocation line NAU4V#6-2 and T7DL·7DS-4V#6L small-fragment translocation line NAU4V#6-3. Powdery mildew tests of the two lines confirmed the presence of an adult-plant powdery mildew resistance gene, Pm4VL, located on the terminal segment of chromosome arm 4V#6L (FL 0.6-1.00). In comparison with the recurrent parent NAU0686 plants, the T7DL·7DS-4V#6L translocation line NAU4V#6-3 showed no obvious negative effect on yield-related traits, providing a new germplasm in breeding for resistance.
Collapse
Affiliation(s)
- Yi Wei
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Wen Li
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application, JCIC-MCP, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Said M, Gaál E, Farkas A, Molnár I, Bartoš J, Doležel J, Cabrera A, Endo TR. Gametocidal genes: from a discovery to the application in wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1396553. [PMID: 38711610 PMCID: PMC11070591 DOI: 10.3389/fpls.2024.1396553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
Some species of the genus Aegilops, a wild relative of wheat, carry chromosomes that after introducing to wheat exhibit preferential transmission to progeny. Their selective retention is a result of the abortion of gametes lacking them due to induced chromosomal aberrations. These chromosomes are termed Gametocidal (Gc) and, based on their effects, they are categorized into three types: mild, intense or severe, and very strong. Gc elements within the same homoeologous chromosome groups of Aegilops (II, III, or IV) demonstrate similar Gc action. This review explores the intriguing dynamics of Gc chromosomes and encompasses comprehensive insights into their source species, behavioral aspects, mode of action, interactions, suppressions, and practical applications of the Gc system in wheat breeding. By delving into these areas, this work aims to contribute to the development of novel plant genetic resources for wheat breeding. The insights provided herein shed light on the utilization of Gc chromosomes to produce chromosomal rearrangements in wheat and its wild relatives, thereby facilitating the generation of chromosome deletions, translocations, and telosomic lines. The Gc approach has significantly advanced various aspects of wheat genetics, including the introgression of novel genes and alleles, molecular markers and gene mapping, and the exploration of homoeologous relationships within Triticeae species. The mystery lies in why gametes possessing Gc genes maintain their normality while those lacking Gc genes suffer abnormalities, highlighting an unresolved research gap necessitating deeper investigation.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Eszter Gaál
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Adoración Cabrera
- Genetics Department, Escuela Técnica Superior de Ingeniería Agronómica y de Montes (ETSIAM), Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
6
|
Farkas A, Gaál E, Ivanizs L, Blavet N, Said M, Holušová K, Szőke-Pázsi K, Spitkó T, Mikó P, Türkösi E, Kruppa K, Kovács P, Darkó É, Szakács É, Bartoš J, Doležel J, Molnár I. Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 2023; 13:20499. [PMID: 37993509 PMCID: PMC10665447 DOI: 10.1038/s41598-023-47845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Collapse
Affiliation(s)
- András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary.
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Nicolas Blavet
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Kateřina Holušová
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Tamás Spitkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| |
Collapse
|
7
|
Wan W, Zhao R, Chen T, Wang L, Zhang X, Li H, Wang X, Bie T. Rapid development of wheat-Dasypyrum villosum compensating translocations resistant to powdery mildew using a triple marker strategy conducted on a large ph1b-induced population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:148. [PMID: 37294325 DOI: 10.1007/s00122-023-04393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Twenty-two compensating wheat-Dasypyrum villosum translocations carrying the powdery mildew resistance gene PmV were developed using a triple marker selection strategy in a large homozygous ph1bph1b population. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive wheat disease in China. Currently, nearly all resistant varieties grown in the middle and lower reaches of the Yangtze River carry Pm21 which is present in a wheat-Dasypyrum villosum T6V#2S·6AL translocation. Its widespread use poses a strong risk of loss of effectiveness if the pathogen were to change. PmV, a Pm21 homolog carried by a wheat-D. villosum T6V#4S·6DL translocation, is also resistant to powdery mildew but is less transmittable and exploited in cultivars. To utilize PmV more effectively, a new recombinant translocation T6V#4S-6V#2S·6AL carrying PmV with a higher transmission rate was used as a basic material for inducing smaller alien translocations. A locally adapted ph1b-carrying line, Yangmai 23-ph1b, was crossed with T6V#4S-6V#2S·6AL to generate a homozygous ph1bph1b population of 6300 F3 individuals. A modified triple marker strategy based on three co-dominant markers including the functional marker MBH1 for PmV in combination with distal and proximal markers 6VS-GX4 and 6VS-GX17, respectively, was used to screen for new recombinants efficiently. Forty-eight compensating translocations were identified, 22 of which carried PmV. Two translocation lines, Dv6T25 with the shortest distal segment carrying PmV and Dv6T31 with the shortest proximal segment carrying PmV were identified, both expressed normal transmission and therefore could promote PmV in wheat breeding. This work exemplifies a model for rapid development of wheat-alien compensating translocations.
Collapse
Affiliation(s)
- Wentao Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China.
| | - Tiantian Chen
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Ling Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haifeng Li
- Yangzhou Polytechnic College, Yangzhou, 225007, Jiangsu, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China.
| |
Collapse
|
8
|
Draeger TN, Rey MD, Hayta S, Smedley M, Alabdullah AK, Moore G, Martín AC. ZIP4 is required for normal progression of synapsis and for over 95% of crossovers in wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1189998. [PMID: 37324713 PMCID: PMC10266424 DOI: 10.3389/fpls.2023.1189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
Tetraploid (AABB) and hexaploid (AABBDD) wheat have multiple sets of similar chromosomes, with successful meiosis and preservation of fertility relying on synapsis and crossover (CO) formation only taking place between homologous chromosomes. In hexaploid wheat, the major meiotic gene TaZIP4-B2 (Ph1) on chromosome 5B, promotes CO formation between homologous chromosomes, whilst suppressing COs between homeologous (related) chromosomes. In other species, ZIP4 mutations eliminate approximately 85% of COs, consistent with loss of the class I CO pathway. Tetraploid wheat has three ZIP4 copies: TtZIP4-A1 on chromosome 3A, TtZIP4-B1 on 3B and TtZIP4-B2 on 5B. Here, we have developed single, double and triple zip4 TILLING mutants and a CRISPR Ttzip4-B2 mutant, to determine the effect of ZIP4 genes on synapsis and CO formation in the tetraploid wheat cultivar 'Kronos'. We show that disruption of two ZIP4 gene copies in Ttzip4-A1B1 double mutants, results in a 76-78% reduction in COs when compared to wild-type plants. Moreover, when all three copies are disrupted in Ttzip4-A1B1B2 triple mutants, COs are reduced by over 95%, suggesting that the TtZIP4-B2 copy may also affect class II COs. If this is the case, the class I and class II CO pathways may be interlinked in wheat. When ZIP4 duplicated and diverged from chromosome 3B on wheat polyploidization, the new 5B copy, TaZIP4-B2, could have acquired an additional function to stabilize both CO pathways. In tetraploid plants deficient in all three ZIP4 copies, synapsis is delayed and does not complete, consistent with our previous studies in hexaploid wheat, when a similar delay in synapsis was observed in a 59.3 Mb deletion mutant, ph1b, encompassing the TaZIP4-B2 gene on chromosome 5B. These findings confirm the requirement of ZIP4-B2 for efficient synapsis, and suggest that TtZIP4 genes have a stronger effect on synapsis than previously described in Arabidopsis and rice. Thus, ZIP4-B2 in wheat accounts for the two major phenotypes reported for Ph1, promotion of homologous synapsis and suppression of homeologous COs.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martín
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
9
|
Pang J, Huang C, Wang Y, Wen X, Deng P, Li T, Wang C, Liu X, Chen C, Zhao J, Ji W. Molecular Cytological Analysis and Specific Marker Development in Wheat-Psathyrostachys huashanica Keng 3Ns Additional Line with Elongated Glume. Int J Mol Sci 2023; 24:ijms24076726. [PMID: 37047699 PMCID: PMC10094845 DOI: 10.3390/ijms24076726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.
Collapse
Affiliation(s)
- Jingyu Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yuesheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinyu Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| |
Collapse
|