1
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
2
|
Xie W, Hao Z, Zhou J, Fu W, Guo L, Zhang X, Chen B. Integrated transcriptomics and metabolomics reveal specific phenolic and flavonoid accumulation in licorice (Glycyrrhiza uralensis Fisch.) induced by arbuscular mycorrhiza symbiosis under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108173. [PMID: 37984021 DOI: 10.1016/j.plaphy.2023.108173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can strengthen plant defense against abiotic stress, such as drought, through multiple mechanisms; however, the specialized chemical defenses induced by AM symbiosis are largely unknown. In a pot experiment, licorice (Glycyrrhiza uralensis Fisch.) inoculated with and without arbuscular mycorrhizal fungus Rhizophagus irregularis Schenck & Smith were grown under well-watered or water deficit conditions. Transcriptomic and metabolomic analyses were combined to investigate licorice root specialized metabolism induced by AM symbiosis under drought stress. Results showed that mycorrhizal plants had few dead leaves, less biomass reduction, and less differentially expressed genes and metabolite features in response to drought compared with nonmycorrhizal plants. Transcriptomic and metabolomic data revealed that mycorrhizal roots generally accumulated lignin regardless of the water regime; however, the expression of genes involved in lignin biosynthesis was significantly downregulated by drought stress in mycorrhizal plants. By contrast, AM inoculation significantly decreased specialized metabolites accumulation, including phenolics and flavonoids under well-watered conditions, whereas these decreases turned to be nonsignificant under drought stress. Moreover, these specific phenolics and flavonoids showed significant drought-induced accumulation pattern in mycorrhizal roots. These results highlight that accumulation of specific root phenolics and flavonoids may support the drought tolerance of mycorrhizal plants.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jun Zhou
- Chrono-Environment UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Thokchom SD, Gupta S, Mewar SK, Kumar P, Kalra C, Kapoor R. Metabolome profiling of arbuscular mycorrhizal fungus treated Ocimum tenuiflorum L. provides insights into deviation in allocation of carbon compounds to secondary metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108039. [PMID: 37717347 DOI: 10.1016/j.plaphy.2023.108039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Arbuscular mycorrhiza (AM) has been reported to influence secondary metabolism of Ocimum tenuiflorum L., thereby improving its therapeutic and commercial importance. To explain changes in the secondary metabolite profile, the study reports effects of AM on leaf metabolome of two high yielding genotypes of O. tenuiflorum inoculated with Rhizophagus intraradices. NMR-based non-targeted metabolic fingerprinting was related to changes at physiological, biochemical, and molecular levels in mycorrhizal (M) plants. AM resulted in higher accumulation of sucrose, which could be related with enhanced photosynthesis by virtue of increased uptake of mineral nutrients. A strong positive correlation between sucrose and net photosynthetic rate and sucrose and mineral nutrients supported that AM-mediated increase in uptake of mineral nutrients is associated with enhanced photosynthetic rate and accumulation of sucrose. Further, higher sucrose synthase activity resulted in increased glucose. Hexokinase activity was also higher in M plants resulting in higher pyruvate accumulation. On the contrary, Krebs cycle was compromised in M plants as evident by lower activities of its enzymes and concentrations of organic and amino acids. Nevertheless, AM increased activities and expressions of enzymes of terpenoid biosynthesis, shikimate, and phenylpropanoid pathways, thereby resulting in augmented production of terpenoids, phenylalanine, and phenols, respectively. Thus, metabolic reprogramming downstream of glycolysis was apparent wherein AMF resulted in more allocation of carbon resources to secondary metabolism as opposed to primary metabolism, which was supported by Pearson's correlation analysis. Higher C:N ratio in M plants explains the provision of more carbon resources to secondary metabolism as against primary metabolism.
Collapse
Affiliation(s)
| | - Samta Gupta
- Department of Botany, University of Delhi, 110007, India
| | - Sujeet Kumar Mewar
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pawan Kumar
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Charu Kalra
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, 110078, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, 110007, India.
| |
Collapse
|