1
|
Wang B, Wang Z, Tang Y, Zhong N, Wu J. Cotton BOP1 mediates SUMOylation of GhBES1 to regulate fibre development and plant architecture. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3054-3067. [PMID: 39003587 PMCID: PMC11500983 DOI: 10.1111/pbi.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
The Arabidopsis BLADE-ON-PETIOLE (BOP) genes are primarily known for their roles in regulating leaf and floral patterning. However, the broader functions of BOPs in regulating plant traits remain largely unexplored. In this study, we investigated the role of the Gossypium hirsutum BOP1 gene in the regulation of fibre length and plant height through the brassinosteroid (BR) signalling pathway. Transgenic cotton plants overexpressing GhBOP1 display shorter fibre lengths and reduced plant height compared to the wild type. Conversely, GhBOP1 knockdown led to increased plant height and longer fibre, indicating a connection with phenotypes influenced by the BR pathway. Our genetic evidence supports the notion that GhBOP1 regulates fibre length and plant height in a GhBES1-dependent manner, with GhBES1 being a major transcription factor in the BR signalling pathway. Yeast two-hybrid, luciferase complementation assay and pull-down assay results demonstrated a direct interaction between GhBOP1 and GhSUMO1, potentially forming protein complexes with GhBES1. In vitro and in vivo SUMOylation analyses revealed that GhBOP1 functions in an E3 ligase-like manner to mediate GhBES1 SUMOylation and subsequent degradation. Therefore, our study not only uncovers a novel mechanism of GhBES1 SUMOylation but also provides significant insights into how GhBOP1 regulates fibre length and plant height by controlling GhBES1 accumulation.
Collapse
Affiliation(s)
- Bingting Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Zhian Wang
- Institute of Cotton Research, Shanxi Agricultural UniversityYunchengChina
| | - Ye Tang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Naiqin Zhong
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jiahe Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
3
|
Kangben F, Kumar S, Li Z, Sreedasyam A, Dardick C, Jones D, Saski CA. Phylogenetic and functional analysis of tiller angle control homeologs in allotetraploid cotton. FRONTIERS IN PLANT SCIENCE 2024; 14:1320638. [PMID: 38356867 PMCID: PMC10864623 DOI: 10.3389/fpls.2023.1320638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Introduction Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.
Collapse
Affiliation(s)
- Foster Kangben
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Chris Dardick
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Don Jones
- Department of Agricultural Research, Cotton Incorporated, Cary, NC, United States
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
4
|
Ma B, Zhu J, Huang X. Diversification of plant SUPPRESSOR OF MAX2 1 (SMAX1)-like genes and genome-wide identification and characterization of cotton SMXL gene family. BMC PLANT BIOLOGY 2023; 23:419. [PMID: 37691127 PMCID: PMC10494346 DOI: 10.1186/s12870-023-04421-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Strigolactones (SLs) are a recently discovered class of plant hormones. SUPPRESSOR OF MAX2 1 (SMAX1)-like proteins, key component of the SL signaling pathway, have been studied extensively for their roles in regulating plant growth and development, such as plant branching. However, systematic identification and functional characterization of SMXL genes in cotton (Gossypium sp.), an important fiber and oil crop, has rarely been conducted. RESULTS We identified 210 SMXL genes from 21 plant genomes and examined their evolutionary relationships. The structural characteristics of the SMXL genes and their encoded proteins exhibited both consistency and diversity. All plant SMXL proteins possess a conserved Clp-N domain, P-loop NTPase, and EAR motif. We identified 63 SMXL genes in cotton and classified these into four evolutionary branches. Gene expression analysis revealed tissue-specific expression patterns of GhSMXL genes, with some upregulated in response to GR24 treatment. Protein co-expression network analysis showed that GhSMXL6, GhSMXL7-1, and GhSMXL7-2 mainly interact with proteins functioning in growth and development, while virus-induced gene silencing revealed that GhSMAX1-1 and GhSMAX1-2 suppress the growth and development of axillary buds. CONCLUSIONS SMXL gene family members show evolutionary diversification through the green plant lineage. GhSMXL6/7-1/7-2 genes play critical roles in the SL signaling pathway, while GhSMXL1-1 and GhSMXL1-2 function redundantly in growth of axillary buds. Characterization of the cotton SMXL gene family provides new insights into their roles in responding to SL signals and in plant growth and development. Genes identified in this study could be used as the candidate genes for improvement of plant architecture and crop yield.
Collapse
Affiliation(s)
- Bin Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
5
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|