1
|
Sarkar S, Upadhyay PK, Dey A, Ekka U, Rathore SS, Shekhawat K, Yeasin M, Singh RK, Babu S, Dass A, Mitran T, Sharma NK, Kumar A, Singh S, Singh VK. Integrating soil and crop metrics with precision agriculture: Pusa N Doctor app for sustainable nitrogen management in maize. PLoS One 2025; 20:e0318678. [PMID: 40173208 PMCID: PMC11964220 DOI: 10.1371/journal.pone.0318678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 04/04/2025] Open
Abstract
Efficient nitrogen (N) management is critical for sustaining high maize yields while minimizing environmental impacts, as conventional practices often lead to N losses, greenhouse gas emissions, and reduced eco-efficiency. To address these challenges, the "Pusa N Doctor" app was developed using dark green colour index (DGCI) for precision N management in maize. The app was further validated in experiment conducted with three N rates- 0 kg/ha (N0PK), 50 kg/ha (N0PK), and 75 kg/ha (N75PK) as basal, along with two splits of N at 35 and 45 DAS as per app (N50PK+App and N75PK+App) and GSTM (N50PK + GSTM and N75PK+GSTM). The plant height, leaf area index, and plant N concentration was highest in N75PK+App. The highest crop growth rate between 0-30 DAS was observed in the N75PK+App treatment (9.97 g/m²/day). Conversely, the maximum relative growth rate between 30-60 DAS was in the N50PK+App, while the lowest was in N75PK+App. The highest harvest index of 35.13% was in N50PK+App. Except for N75PK+App and recommended dose of fertilizer (RDF), the partial N balance was close to 1, with a minimum value of 0.87 in N75PK+App. The lowest virtual N was in N50PK+App (0.45), while in N75PK+App it was 2.16 times higher than RDF. All N fertilized treatments except N50PK+App witnessed increased cost of cultivation over RDF. N50PK+App had 29.5% lower GHGI of N2O, with 11.6% and 13.3% higher energy and GHG-based eco-efficiency respectively than RDF. Thus, applying 50 kg N as basal along with its 2 splitting as per Pusa N Doctor, optimizes maize-growth, N use efficiency, eco-efficiency, and reduces GHG emissions.
Collapse
Affiliation(s)
| | | | - Abir Dey
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Utpal Ekka
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Md. Yeasin
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Subhash Babu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anchal Dass
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tarik Mitran
- Soils & Land Resources Assessment Division, National Remote Sensing Centre, Balanagar, Hyderabad, India
| | | | - Atul Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satendra Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vinod Kumar Singh
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India
| |
Collapse
|
2
|
Feng W, Xue W, Zhao Z, Shi Z, Wang W, Bai Y, Wang H, Qiu P, Xue J, Chen B. Nitrogen fertilizer application rate affects the dynamic metabolism of nitrogen and carbohydrates in kernels of waxy maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1416397. [PMID: 39148609 PMCID: PMC11324447 DOI: 10.3389/fpls.2024.1416397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Introduction Nitrogen (N) plays a pivotal role in the growth, development, and yield of maize. An optimal N application rate is crucial for enhancing N and carbohydrate (C) accumulation in waxy maize grains, which in turn synergistically improves grain weight. Methods A 2-year field experiment was conducted to evaluate the impact of different N application rates on two waxy maize varieties, Jinnuo20 (JN20) and Jindannuo41 (JDN41), during various grain filling stages. The applied N rates were 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. Results The study revealed that N application significantly influenced nitrogen accumulation, protein components (gliadin, albumin, globulin, and glutelin), carbohydrate contents (soluble sugars, amylose, and amylopectin), and activities of enzymes related to N and C metabolism in waxy maize grains. Notable varietal differences in these parameters were observed. In both varieties, the N2 treatment consistently resulted in the highest values for almost all measured traits compared to the other N treatments. Specifically, the N2 treatment yielded an average increase in grain dry matter of 21.78% for JN20 and 17.11% for JDN41 compared to N0. The application of N positively influenced the activities of enzymes involved in C and N metabolism, enhancing the biosynthesis of grain protein, amylose, and amylopectin while decreasing the accumulation of soluble sugars. This modulation of the C/N ratio in the grains directly contributed to an increase in grain dry weight. Conclusion Collectively, our findings underscore the critical role of N in regulating kernel N and C metabolism, thereby influencing dry matter accumulation in waxy maize grains during the grain filling stage.
Collapse
Affiliation(s)
- Wanjun Feng
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Weiwei Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zequn Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhaokang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weijie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yu Bai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haoxue Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Qiu
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Baoguo Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
3
|
Zhou Y, Liu M, Chu S, Sun J, Wang Y, Liao S, Wang P, Huang S. Moderately reducing N input to mitigate heat stress in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173143. [PMID: 38735336 DOI: 10.1016/j.scitotenv.2024.173143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.
Collapse
Affiliation(s)
- Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Siyuan Chu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Galindo FS, Thiengo CC, Pagliari PH, Bernardes JVS, dos Santos GD, Longato PAF, de Sousa Vilela L, Teixeira Filho MCM, Azevedo RA, Gaziola SA, Lavres J. Interactive Effects of Bacterial Consortia and Basal Nitrogen Fertilization on Initial Maize Growth: an Investigation Based on Physiological Parameters and 15N Isotopic Analysis. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 01/14/2025]
|
5
|
Santos TDO, Amaral Junior ATD, Bispo RB, Bernado WDP, Simão BR, de Lima VJ, Freitas MSM, Mora-Poblete F, Trindade RDS, Kamphorst SH, Pereira Rodrigues W, Campostrini E, Nicácio Viana F, Cruz CD. Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112135. [PMID: 37299114 DOI: 10.3390/plants12112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. N deprivation caused reductions of up to 65% in terms of plant architecture, 37% in terms of leaf pigments, and 42% in terms of photosynthesis-related traits. Heterosis had significant effects on growth traits, NUE, and foliar pigments, particularly under low soil nitrogen conditions. N-utilization efficiency was found to be the mechanism favoring superior hybrid performance for NUE. Non-additive genetic effects were predominant in controlling the studied traits, indicating that exploring heterosis is the most effective strategy for obtaining superior hybrids to promote NUE. The findings are relevant and beneficial for agro farmers seeking sustainable agricultural practices and improved crop productivity through the optimization of nitrogen utilization.
Collapse
Affiliation(s)
- Talles de Oliveira Santos
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Antônio Teixeira do Amaral Junior
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Rosimeire Barboza Bispo
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
- Proteomics and Metabolomics Facilities, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | - Wallace de Paula Bernado
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Bruna Rohem Simão
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Valter Jário de Lima
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Marta Simone Mendonça Freitas
- Plant Science Laboratory, Center for Agricultural Science and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile
| | - Roberto Dos Santos Trindade
- National Research Center for Maize and Sorghum, Brazilian Agricultural Research Corporation, MG-424 Highway, Km 45, Sete Lagoas 35701-970, MG, Brazil
| | - Samuel Henrique Kamphorst
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Weverton Pereira Rodrigues
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão (UEMASUL), Estreito 65975-000, MA, Brazil
| | - Eliemar Campostrini
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Flávia Nicácio Viana
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Cosme Damião Cruz
- Laboratory of Genetics and Plant Breeding, Center for Agricultural Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
6
|
Soualiou S, Duan F, Li X, Zhou W. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3142-3162. [PMID: 36847687 DOI: 10.1093/jxb/erad073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Cold stress inhibits the early growth of maize, leading to reduced productivity. Nitrogen (N) is an essential nutrient that stimulates maize growth and productivity, but the relationship between N availability and cold tolerance is poorly characterized. Therefore, we studied the acclimation of maize under combined cold stress and N treatments. Exposure to cold stress caused a decline in growth and N assimilation, but increased abscisic acid (ABA) and carbohydrate accumulation. The application of different N concentrations from the priming stage to the recovery period resulted in the following observations: (i) high N supply alleviated cold stress-dependent growth inhibition, as shown by increased biomass, chlorophyll and Rubisco content and PSII efficiency; (ii) cold stress-induced ABA accumulation was repressed under high N, presumably due to enhanced stomatal conductance; (iii) the mitigating effects of high N on cold stress could be due to the increased activities of N assimilation enzymes and improved redox homeostasis. After cold stress, the ability of maize seedlings to recover increased under high N treatment, indicating the potential role of high N in the cold stress tolerance of maize seedlings.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| |
Collapse
|
7
|
Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. STRESSES 2023. [DOI: 10.3390/stresses3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitrogen (N) is essential for sustaining life on Earth and plays a vital role in plant growth and thus agricultural production. The excessive use of N fertilizers not only harms the economy, but also the environment. In the context of the environmental impacts caused by agriculture, global maize improvement programs aim to develop cultivars with high N-use efficiency (NUE) to reduce the use of N fertilizers. Since N is highly mobile in plants, NUE is related to numerous little-known morphophysiological and molecular mechanisms. In this review paper we present an overview of the morpho-physiological adaptations of shoot and root, molecular mechanisms involved in plant response to low nitrogen environment, and the genetic effects involved in the control of key traits for NUE. Some studies show that the efficiency of cultivars growing under low N is related to deep root architecture, more lateral roots (LR), and sparser branching of LR, resulting in lower metabolic costs. The NUE cultivars also exhibit more efficient photosynthesis, which affects plant growth under suboptimal nitrogen conditions. In this sense, obtaining superior genotypes for NUE can be achieved with the exploitation of heterosis, as non-additive effects are more important in the expression of traits associated with NUE.
Collapse
|
8
|
Gheith EMS, El-Badry OZ, Lamlom SF, Ali HM, Siddiqui MH, Ghareeb RY, El-Sheikh MH, Jebril J, Abdelsalam NR, Kandil EE. Maize ( Zea mays L.) Productivity and Nitrogen Use Efficiency in Response to Nitrogen Application Levels and Time. FRONTIERS IN PLANT SCIENCE 2022; 13:941343. [PMID: 35845674 PMCID: PMC9284315 DOI: 10.3389/fpls.2022.941343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Productivity of maize (Zea mays L.) and nitrogen use efficiency (NUE) as affected by nitrogen application levels and timing were studied. The experimental design was a three-replication randomized complete block design (RCBD). The first factor was nitrogen levels (122, 240, 288 and 336 kg N/ha) and the second factor was nitrogen timing (50% of N at sowing and 50% of N before the first irrigation; T1, 50% of N at sowing and 50% of N before the second irrigation; T2 and 50% of N before the first irrigation and 50% of N before the second irrigation; T3). Results indicated that plant height, ear length, kernel weight, number of grains/rows, number of grains/ear and grain yields all increased significantly as nitrogen levels increased and the level of 336 kg N/ha significantly exhibiting the highest values in both seasons. In terms of nitrogen application time, maize yield parameters such as plant height, ear length, kernel weight/ear, number of grains/rows, number of grains/ear and grain yield were significantly affected by nitrogen timing, with the highest values obtained at T3 while the lowest values obtained at T1 in both seasons. The interaction had a significant impact on plant height and grain yield/ha, with the tallest plants, the highest yields and its components observed at 336 kg N/ha, with 50% of N applied during the first irrigation and 50% of N applied during the second. Furthermore, under the study conditions, NUE decreased dramatically as nitrogen levels increased and increased significantly as nitrogen application time changed.
Collapse
Affiliation(s)
- E. M. S. Gheith
- Agronomy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ola Z. El-Badry
- Agronomy Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed H. El-Sheikh
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Jebril Jebril
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Essam E. Kandil
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|