1
|
Dong Y, Hong J, Qiang J, Cao Y, Qu G, Li Q, Gao Y, Yu X. The road of lipid migration in flaxseed (Linum usitatissimum L.) during germination. Food Res Int 2025; 201:115581. [PMID: 39849746 DOI: 10.1016/j.foodres.2024.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Lipids are essential sources of carbon and energy during flaxseed germination; however, the dynamic changes in key lipid metabolites, pathways, and their locations remain unclear. This study revealed that oil bodies migrated from well-distributed locations to the cell wall between 0-2 d, with cell contours gradually blurring during 2-3 d, initiating the germination process. Subsequently, the order of oil body migration was leaf > stem > root during 4-7 d. This study established lipid metabolite pathway networks to elucidate the underlying mechanisms of the interconversion of active lipid metabolites. Phosphatidyl methyl ethanolamines (PMEs) (18:2/23:0), (24:0/18:2), and (24:0/18:3) were utilized as energy substrates through α-linolenic acid metabolism, autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathways during 2-3 d. The production of phosphatidic acid (PA) (18:1/18:1) exceeded its consumption in glycerolipid metabolism, glycerophospholipid metabolism, and the phosphatidylinositol signaling system, resulting in the consumption of phosphatidylethanolamine (PE) ((16:0/16:0), (24:0/24:0)) during 3-4 d. The active metabolite phosphatidylcholine (PC) (18:1/18:1) converted to PA and PE in leaves, stems, and roots and to triacylglycerol (TG) in stems and roots during 4-6 d. Oil bodies existed in leaves (ceramide (Cer), TG) and roots (TG) during 6-7 d. These findings elucidate the metabolic processes underlying seedling development, paving the way for crop improvement.
Collapse
Affiliation(s)
- Yaoyao Dong
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jianshu Hong
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jie Qiang
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Yongsheng Cao
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Guoyi Qu
- Shaanxi Guanzhongyoufang Oil Co., Ltd, Baoji 721000, Shaanxi, PR China
| | - Qi Li
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Li L, Jia X, Fan K. Recent advance in nondestructive imaging technology for detecting quality of fruits and vegetables: a review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39291966 DOI: 10.1080/10408398.2024.2404639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
As an integral part of daily dietary intake, the market demand for fruits and vegetables is continuously growing. However, traditional methods for assessing the quality of fruits and vegetables are prone to subjective influences, destructive to samples, and fail to comprehensively reflect internal quality, thereby resulting in various shortcomings in ensuring food safety and quality control. Over the past few decades, imaging technologies have rapidly evolved and been widely employed in nondestructive detection of fruit and vegetable quality. This paper offers a thorough overview of recent advancements in nondestructive imaging technologies for assessing the quality of fruits and vegetables, including hyperspectral imaging (HSI), fluorescence imaging (FI), magnetic resonance imaging (MRI), thermal imaging (TI), terahertz imaging, X-ray imaging (XRI), ultrasonic imaging, and microwave imaging (MWI). The principles and applications of these imaging techniques in nondestructive testing are summarized. The challenges and future trends of these technologies are discussed.
Collapse
Affiliation(s)
- Lijing Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xiwu Jia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Jiang Q, Zhao S, Zhao W, Wang P, Qin P, Wang J, Zhao Y, Ge Z, Zhao X, Wang D. The role of water distribution, cell wall polysaccharides, and microstructure on radish ( Raphanus sativus L.) textural properties during dry-salting process. Food Chem X 2024; 22:101407. [PMID: 38711773 PMCID: PMC11070821 DOI: 10.1016/j.fochx.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Radish (Raphanus sativus L.) undergoes texture changes in their phy-chemical properties during the long-term dry-salting process. In our study, we found that during the 60-day salting period, the hardness and crispness of radish decreased significantly. In further investigation, we observed that the collaborative action of pectin methylesterase (PME) and polygalacturonase (PG) significantly decreased the total pectin, alkali-soluble pectin (ASP), and chelator-soluble pectin (CSP) content, while increasing the water-soluble pectin (WSP) content. Furthermore, the elevated activities of cellulase and hemicellulase directly led to the notable fragmentation of cellulose and hemicellulose. The above reactions jointly induced the depolymerization and degradation of cell wall polysaccharides, resulting in an enlargement of intercellular spaces and shrinkage of the cell wall, which ultimately led to a reduction in the hardness and crispness of the salted radish. This study provided key insights and guidance for better maintaining textural properties during the dry-salting process of radish.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
4
|
Guo L, Wang H, Hao C, Chi Z, Cheng L, Yang H, Zhang J, Zhao R, Wu Y. Investigation of the soybean infiltration process utilizing low-field nuclear magnetic resonance technology. PLoS One 2024; 19:e0297756. [PMID: 38363777 PMCID: PMC10871503 DOI: 10.1371/journal.pone.0297756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
This paper employs low-field nuclear magnetic resonance (LF-NMR) technology to meticulously analyze and explore the intricate soybean infiltration process. The methodology involves immersing soybeans in distilled water, with periodic implementation of Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence experiments conducted at intervals of 20 to 30 minutes to determine the relaxation time T2. Currently, magnetic resonance imaging (MRI) is conducted every 30 minutes. The analysis uncovers the existence of three distinct water phases during the soybean infiltration process: bound water denoted as T21, sub-bound water represented by T22, and free water indicated as T23. The evolution of these phases unfolds as follows: bound water T21 displays a steady oscillation within the timeframe of 0 to 400 minutes; sub-bound water T22 and free water T23 exhibit a progressive pattern characterized by a rise-stable-rise trajectory. Upon scrutinizing the magnetic resonance images, it is discerned that the soybean infiltration commences at a gradual pace from the seed umbilicus. The employment of LF-NMR technology contributes significantly by affording an expeditious, non-destructive, and dynamic vantage point to observe the intricate motion of water migration during soybean infiltration. This dynamic insight into the movement of water elucidates the intricate mass transfer pathway within the soybean-water system, thus furnishing a robust scientific foundation for the optimization of processing techniques.
Collapse
Affiliation(s)
- Lisha Guo
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Han Wang
- Department of Medical Imaging, Hebei General Hospital, Shijiazhuang, China
| | - Chenru Hao
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Ziqiang Chi
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Li Cheng
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Haibo Yang
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Jing Zhang
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Ruibin Zhao
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Yanru Wu
- Department of Medical Physics, School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Mangena P. Evolving role of synthetic cytokinin 6-benzyl adenine for drought stress tolerance in soybean (Glycine max L. Merr.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.992581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The enhanced growth and productivity of soybeans during the past decades were possible due to the application of agrichemicals such as bio-fertilizers, chemical fertilizers, and the use of high yielding, as well as disease resistant transgenic and non-transgenic varieties. Agrichemicals applied as seed primers, plant protectants, and growth regulators, however, had a diminutive significance on growth and productivity improvements across the globe. The utilization of plant growth regulators (PGRs) for vegetative growth, reproduction and yield quality improvements remains unexplored, particularly, the use of cytokinins such as 6-benzyl adenine (6-BAP) to improve soybean response to abiotic stresses. Therefore, an understanding of the role of 6-BAP in the mediation of an array of adaptive responses that provide plants with the ability to withstand abiotic stresses must be thoroughly investigated. Such mitigative effects will play a critical role in encouraging exogenous application of plant hormones like 6-BAP as a mechanism for overcoming drought stress related effects in soybean. This paper discusses the evolving role of synthetic cytokinin 6-bezyl adenine in horticulture, especially the implications of its exogenous applications in soybean to confer tolerance to drought stress.
Collapse
|