1
|
Revalska M, Radkova M, Zhiponova M, Vassileva V, Iantcheva A. Functional Genomics of Legumes in Bulgaria-Advances and Future Perspectives. Genes (Basel) 2025; 16:296. [PMID: 40149448 PMCID: PMC11941780 DOI: 10.3390/genes16030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Members of the Leguminosae family are important crops that provide food, animal feed and vegetable oils. Legumes make a substantial contribution to sustainable agriculture and the nitrogen cycle through their unique ability to fix atmospheric nitrogen in agricultural ecosystems. Over the past three decades, Medicago truncatula and Lotus japonicus have emerged as model plants for genomic and physiological research in legumes. The advancement of innovative molecular and genetic tools, particularly insertional mutagenesis using the retrotransposon Tnt1, has facilitated the development of extensive mutant collections and enabled precise gene tagging in plants for the identification of key symbiotic and developmental genes. Building on these resources, twelve years ago, our research team initiated the establishment of a platform for functional genomic studies of legumes in Bulgaria. In the framework of this initiative, we conducted systematic sequencing of selected mutant lines and identified genes involved in plant growth and development for detailed functional characterization. This review summarizes our findings on the functions of selected genes involved in the growth and development of the model species, discusses the molecular mechanisms underlying important developmental processes and examines the potential for the translation of this fundamental knowledge to improve commercially important legume crops in Bulgaria and globally.
Collapse
Affiliation(s)
- Miglena Revalska
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| | - Mariana Radkova
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria;
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Anelia Iantcheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tsankov 8, 1164 Sofia, Bulgaria; (M.R.); (M.R.)
| |
Collapse
|
2
|
Zhu S, Tang G, Yang Z, Han R, Deng W, Shen X, Huang R. Fine mapping of a major QTL, qECQ8, for rice taste quality. BMC PLANT BIOLOGY 2024; 24:1034. [PMID: 39478453 PMCID: PMC11526670 DOI: 10.1186/s12870-024-05744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes. RESULTS A population of F9 recombinant inbred lines resulting from a cross between R668 (national standard of high-quality third class) and R838 (common edible rice) was used to construct a high-density genetic map (2,295.062 cM). The map comprises 639,504 markers distributed on 12 linkage elements with an average genetic distance of 0.004 cM. We detected a major taste-related QTL, qECQ8, which explained 41.4% of phenotypic variance and had LOD values of 4.42-7.73. Using a five-generation NIL population from the backcross of "Ganxiangzhan No. 1" carrying qECQ8 with the recurrent parent R838 (without qECQ8), we narrowed qECQ8 to a 187.5 kb interval between markers M33 and M37 on Chr8. Comparative transcriptomic analysis revealed that photosynthesis, glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms, and alpha-linolenic acid metabolism were induced in developing seeds of lines containing qECQ8. Furthermore, we identified two candidate genes in the qECQ8 region, including LOC_Os08g30550 (zinc knuckle family protein), a major candidate for genetic-assisted breeding of high-quality rice. CONCLUSION Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.
Collapse
Affiliation(s)
- Shan Zhu
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Guoping Tang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zhou Yang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Ruicai Han
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wei Deng
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xianhua Shen
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
3
|
Hou Y, Gan J, Fan Z, Sun L, Garg V, Wang Y, Li S, Bao P, Cao B, Varshney RK, Zhao H. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations. Nat Commun 2024; 15:8085. [PMID: 39278956 PMCID: PMC11402969 DOI: 10.1038/s41467-024-52376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
Moso bamboo (Phyllostachys edulis), an ecologically and economically important forest species in East Asia, plays vital roles in carbon sequestration and climate change mitigation. However, intensifying climate change threatens moso bamboo survival. Here we generate high-quality haplotype-based pangenome assemblies for 16 representative moso bamboo accessions and integrated these assemblies with 427 previously resequenced accessions. Characterization of the haplotype-based pangenome reveals extensive genetic variation, predominantly between haplotypes rather than within accessions. Many genes with allele-specific expression patterns are implicated in climate responses. Integrating spatiotemporal climate data reveals more than 1050 variations associated with pivotal climate factors, including temperature and precipitation. Climate-associated variations enable the prediction of increased genetic risk across the northern and western regions of China under future emissions scenarios, underscoring the threats posed by rising temperatures. Our integrated haplotype-based pangenome elucidates moso bamboo's local climate adaptation mechanisms and provides critical genomic resources for addressing intensifying climate pressures on this essential bamboo. More broadly, this study demonstrates the power of long-read sequencing in dissecting adaptive traits in climate-sensitive species, advancing evolutionary knowledge to support conservation.
Collapse
Affiliation(s)
- Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Junwei Gan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Zeyu Fan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Lei Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Shanying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Pengfei Bao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Bingchen Cao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
4
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
5
|
Li S, Xu J, Cao Y, Wu J, Liu Q, Zhang D. Genome-Wide Analyses of CCHC Family Genes and Their Expression Profiles under Drought Stress in Rose ( Rosa chinensis). Int J Mol Sci 2024; 25:8983. [PMID: 39201669 PMCID: PMC11354476 DOI: 10.3390/ijms25168983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
CCHC-type zinc finger proteins (CCHC-ZFPs), ubiquitous across plant species, are integral to their growth, development, hormonal regulation, and stress adaptation. Roses (Rosa sp.), as one of the most significant and extensively cultivated ornamentals, account for more than 30% of the global cut-flower market. Despite its significance, the CCHC gene family in roses (Rosa sp.) remains unexplored. This investigation identified and categorized 41 CCHC gene members located on seven chromosomes of rose into 14 subfamilies through motif distribution and phylogenetic analyses involving ten additional plant species, including Ginkgo biloba, Ostreococcus lucimarinus, Arabidopsis thaliana, and others. This study revealed that dispersed duplication likely plays a crucial role in the diversification of the CCHC genes, with the Ka/Ks ratio suggesting a history of strong purifying selection. Promoter analysis highlighted a rich presence of cis-acting regulatory elements linked to both abiotic and biotic stress responses. Differential expression analysis under drought conditions grouped the 41 CCHC gene members into five distinct clusters, with those in group 4 exhibiting pronounced regulation in roots and leaves under severe drought. Furthermore, virus-induced gene silencing (VIGS) of the RcCCHC25 member from group 4 compromised drought resilience in rose foliage. This comprehensive analysis lays the groundwork for further investigations into the functional dynamics of the CCHC gene family in rose physiology and stress responses.
Collapse
Affiliation(s)
- Shijie Li
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Jun Xu
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Yong Cao
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Jie Wu
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT 2601, Australia;
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| |
Collapse
|
6
|
Khassanova G, Oshergina I, Ten E, Jatayev S, Zhanbyrshina N, Gabdola A, Gupta NK, Schramm C, Pupulin A, Philp-Dutton L, Anderson P, Sweetman C, Jenkins CL, Soole KL, Shavrukov Y. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1354413. [PMID: 38766473 PMCID: PMC11099236 DOI: 10.3389/fpls.2024.1354413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Irina Oshergina
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Evgeniy Ten
- Department of Crop Breeding, A.I.Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Nursaule Zhanbyrshina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical Research University, Astana, Kazakhstan
| | - Narendra K. Gupta
- Department of Plant Physiology, Sri Karan Narendra (SNK) Agricultural University, Jobster, Rajastan, India
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Antonio Pupulin
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Lauren Philp-Dutton
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Crystal Sweetman
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Colin L.D. Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Zhang L, Sun W, Gao W, Zhang Y, Zhang P, Liu Y, Chen T, Yang D. Genome-wide identification and analysis of the GGCT gene family in wheat. BMC Genomics 2024; 25:32. [PMID: 38177998 PMCID: PMC10768367 DOI: 10.1186/s12864-023-09934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Wanting Sun
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Weidong Gao
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Lanzhou, Gansu, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
9
|
Yow AG, Laosuntisuk K, Young RA, Doherty CJ, Gillitt N, Perkins-Veazie P, Jenny Xiang QY, Iorizzo M. Comparative transcriptome analysis reveals candidate genes for cold stress response and early flowering in pineapple. Sci Rep 2023; 13:18890. [PMID: 37919298 PMCID: PMC10622448 DOI: 10.1038/s41598-023-45722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Pineapple originates from tropical regions in South America and is therefore significantly impacted by cold stress. Periodic cold events in the equatorial regions where pineapple is grown may induce early flowering, also known as precocious flowering, resulting in monetary losses due to small fruit size and the need to make multiple passes for harvesting a single field. Currently, pineapple is one of the most important tropical fruits in the world in terms of consumption, and production losses caused by weather can have major impacts on worldwide exportation potential and economics. To further our understanding of and identify mechanisms for low-temperature tolerance in pineapple, and to identify the relationship between low-temperature stress and flowering time, we report here a transcriptomic analysis of two pineapple genotypes in response to low-temperature stress. Using meristem tissue collected from precocious flowering-susceptible MD2 and precocious flowering-tolerant Dole-17, we performed pairwise comparisons and weighted gene co-expression network analysis (WGCNA) to identify cold stress, genotype, and floral organ development-specific modules. Dole-17 had a greater increase in expression of genes that confer cold tolerance. The results suggested that low temperature stress in Dole-17 plants induces transcriptional changes to adapt and maintain homeostasis. Comparative transcriptomic analysis revealed differences in cuticular wax biosynthesis, carbohydrate accumulation, and vernalization-related gene expression between genotypes. Cold stress induced changes in ethylene and abscisic acid-mediated pathways differentially between genotypes, suggesting that MD2 may be more susceptible to hormone-mediated early flowering. The differentially expressed genes and module hub genes identified in this study are potential candidates for engineering cold tolerance in pineapple to develop new varieties capable of maintaining normal reproduction cycles under cold stress. In addition, a total of 461 core genes involved in the development of reproductive tissues in pineapple were also identified in this study. This research provides an important genomic resource for understanding molecular networks underlying cold stress response and how cold stress affects flowering time in pineapple.
Collapse
Affiliation(s)
- Ashley G Yow
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Roberto A Young
- Research Department of Dole, Standard Fruit de Honduras, Zona Mazapan, 31101, La Ceiba, Honduras
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Penelope Perkins-Veazie
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA.
| |
Collapse
|
10
|
Cheng K, Zhang C, Lu Y, Li J, Tang H, Ma L, Zhu H. The Glycine-Rich RNA-Binding Protein Is a Vital Post-Transcriptional Regulator in Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3504. [PMID: 37836244 PMCID: PMC10575402 DOI: 10.3390/plants12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current understanding of GR-RBPs has predominantly been centered on Arabidopsis thaliana, a model plant for investigating plant growth and development. Nonetheless, an increasing body of literature has emerged in recent years, shedding light on the presence and functions of GRPs in diverse crop species. In this review, we not only delineate the distinctive structural domains of plant GR-RBPs but also elucidate several contemporary mechanisms of GR-RBPs in the post-transcriptional regulation of RNA. These mechanisms encompass intricate processes, including RNA alternative splicing, polyadenylation, miRNA biogenesis, phase separation, and RNA translation. Furthermore, we offer an exhaustive synthesis of the diverse roles that GR-RBPs fulfill within crop plants. Our overarching objective is to provide researchers and practitioners in the field of agricultural genetics with valuable insights that may inform and guide the application of plant genetic engineering for enhanced crop development and sustainable agriculture.
Collapse
Affiliation(s)
- Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| |
Collapse
|
11
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|