1
|
Zheng T, Li M, Kong Z, Ji L, Fu X, Dai L, Kan J, Men Q, Wang H, Du B, Liu K, Mei X, Wang C. Identification, Genome Characterization, and Growth Optimization of Paenibacillus peoriae MHJL1 for Biocontrol and Growth Promotion of Cotton Seedlings. Microorganisms 2025; 13:261. [PMID: 40005628 PMCID: PMC11857793 DOI: 10.3390/microorganisms13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fusarium and verticillium wilt are the primary diseases affecting cotton plants, significantly reducing both the yield and quality of cotton. Paenibacillus spp. are crucial biocontrol strains for controlling plant diseases. In this study, Paenibacillus peoriae MHJL1, which could prevent the pathogenic fungi of fusarium and verticillium wilt and promote cotton growth, was isolated from the rhizosphere soil of cotton plants. Whole-genome analysis of strain MHJL1 identified 16 gene clusters for secondary metabolite synthesis, including fusaricidins with potent antifungal properties. By optimizing the fermentation process, the cell and spore numbers of MHJL1 were increased to 2.14 × 108 CFU/mL and 8.66 × 108 CFU/mL, respectively. Moreover, the antifungal ability of MHJL1 was also increased by 31.48%. In pot experiments conducted with healthy soil, the control rates for MHJL1 against fusarium and verticillium wilt were found to be 44.83% and 58.27%, respectively; in experiments using continuously cropped soil, the control rates were 55.22% against fusarium wilt and 48.46% against verticillium wilt. Our findings provide valuable insights for the biocontrol application and fermentation of P. peoriae MHJL1, while also contributing a new resource for the development of microbial agents.
Collapse
Affiliation(s)
- Tongtong Zheng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Min Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Zhengnan Kong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (L.J.); (X.F.)
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (L.J.); (X.F.)
| | - Li Dai
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Jizhen Kan
- Juxian Agricultural Technical Service Center, Rizhao Academy of Agricultural Science, Rizhao 276800, China; (J.K.); (Q.M.)
| | - Qingyong Men
- Juxian Agricultural Technical Service Center, Rizhao Academy of Agricultural Science, Rizhao 276800, China; (J.K.); (Q.M.)
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Binghai Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Kai Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Xiangui Mei
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| | - Chengqiang Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia l Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (M.L.); (Z.K.); (L.D.); (B.D.); (K.L.)
| |
Collapse
|
2
|
Zhang T, Zhu J, Zhang F, Zhao S, Liu W, He R, Dong H, Hong Q, Tan C, Li P. Residual swin transformer for classifying the types of cotton pests in complex background. FRONTIERS IN PLANT SCIENCE 2024; 15:1445418. [PMID: 39258298 PMCID: PMC11383767 DOI: 10.3389/fpls.2024.1445418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Background Cotton pests have a major impact on cotton quality and yield during cotton production and cultivation. With the rapid development of agricultural intelligence, the accurate classification of cotton pests is a key factor in realizing the precise application of medicines by utilize unmanned aerial vehicles (UAVs), large application devices and other equipment. Methods In this study, a cotton insect pest classification model based on improved Swin Transformer is proposed. The model introduces the residual module, skip connection, into Swin Transformer to improve the problem that pest features are easily confused in complex backgrounds leading to poor classification accuracy, and to enhance the recognition of cotton pests. In this study, 2705 leaf images of cotton insect pests (including three insect pests, cotton aphids, cotton mirids and cotton leaf mites) were collected in the field, and after image preprocessing and data augmentation operations, model training was performed. Results The test results proved that the accuracy of the improved model compared to the original model increased from 94.6% to 97.4%, and the prediction time for a single image was 0.00434s. The improved Swin Transformer model was compared with seven kinds of classification models (VGG11, VGG11-bn, Resnet18, MobilenetV2, VIT, Swin Transformer small, and Swin Transformer base), and the model accuracy was increased respectively by 0.5%, 4.7%, 2.2%, 2.5%, 6.3%, 7.9%, 8.0%. Discussion Therefore, this study demonstrates that the improved Swin Transformer model significantly improves the accuracy and efficiency of cotton pest detection compared with other classification models, and can be deployed on edge devices such as utilize unmanned aerial vehicles (UAVs), thus providing an important technological support and theoretical basis for cotton pest control and precision drug application.
Collapse
Affiliation(s)
- Ting Zhang
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| | - Jikui Zhu
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| | - Fengkui Zhang
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| | - Shijie Zhao
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| | - Wei Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China/Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineer, Yangzhou University, Yangzhou, China
| | - Ruohong He
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| | - Hongqiang Dong
- Corps in Southern Xinjiang, College of Agronomy, Tarim University, Alar, China
| | - Qingqing Hong
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China/Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, College of Information Engineer, Yangzhou University, Yangzhou, China
| | - Changwei Tan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Ping Li
- College of Mechanical and Electrical Engineering/Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region/Key Laboratory of Tarim Oasis Agriculture (Tarim University) Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
3
|
Jambhulkar PP, Bajpai R, Reddy HJ, Tripathy PS, Varun P, Rout AK, Behera BK, Lakshman DK, Nanjundappa M. Assessment of Genetic Diversity and the Population Structure of Species from the Fusarium fujikuroi Species Complex Causing Fusarium Stalk Rot of Maize. J Fungi (Basel) 2024; 10:574. [PMID: 39194900 DOI: 10.3390/jof10080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Fusarium stalk rot (FSR), caused by the Fusarium species complex, is an economic threat to maize cultivation all over the world. We investigated the population structure and genetic diversity of Fusarium species obtained from five major maize-growing regions in India. The Tef-1α locus was used for phylogenetic analysis of geographically distinct isolates of Fusarium verticillioides, F. andiyazi, F. proliferatum, F. nygamai, and F. acutatum causing FSR. A phylogenetic tree showed monophyletic, polyphyletic, and paraphyletic groupings reflecting the complex evolutionary history and genetic diversity within the genus. Monophyletic groupings depicting strong bootstrap support were shown to have a single common ancestor and genetic coherence with limited genetic divergence among sequences. Polyphyletic groupings also presented significant genetic differentiation within the F. verticillioides sequences from diverse ecological niches. Nucleotide diversity of moderate level 0.02471 reflected genetic variations within populations that were attributed to factors such as mutation, genetic drift, or varying selection pressures. The Fst value of 0.98205 is particularly indicative of high genetic differentiation, implying that most of the genetic variance is due to differences between populations rather than within them. F. verticillioides, with 57 sequences, showed low genetic diversity with three segregating sites and a low haplotype diversity of 0.19486, suggesting the founder effect, where a reduced population expands from a limited genetic pool. The total data estimates across all populations for haplotype analysis showed 72 sequences, 44 segregating sites, and 9 haplotypes with a haplotype diversity of 0.48513. The evolutionary dynamics showed genetic differentiations among Fusarium species causing FSR. AMOVA indicated high within-population variations, depicting a substantial genetic diversity within individual populations. The results offer a comprehensive framework for discussing the implications of genetic diversity in pathogen management and the evolutionary dynamics of the Fusarium species causing FSR in maize in the Indian subcontinent.
Collapse
Affiliation(s)
- Prashant P Jambhulkar
- Department of Plant Pathology, College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Ruchira Bajpai
- Department of Plant Pathology, College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Harish Jayarama Reddy
- Department of Plant Pathology, College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Partha Sarathi Tripathy
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Priyanka Varun
- Department of Plant Pathology, College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Ajaya Kumar Rout
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Bijay Kumar Behera
- College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi 283004, India
| | - Dilip K Lakshman
- Sustainable Agricultural System Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Mallikarjuna Nanjundappa
- Zonal Agricultural Research Station, Vishweshwariah Canal Farm, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
4
|
Bi M, Li M, Wei J, Meng Z, Wang Z, Ying M, Yang X, Huang L. Genome-scale cis-acting catabolite-responsive element editing confers Bacillus pumilus LG3145 plant-beneficial functions. iScience 2024; 27:108983. [PMID: 38357660 PMCID: PMC10864199 DOI: 10.1016/j.isci.2024.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Rhizosphere dwelling microorganism such as Bacillus spp. are helpful for crop growth. However, these functions are adversely affected by long-term synthetic fertilizer application. We developed a modified CRISPR/Cas9 system using non-specific single-guide RNAs to disrupt the genome-wide cis-acting catabolite-responsive elements (cres) in a wild-type Bacillus pumilus strain, which conferred dual plant-benefit properties. Most of the mutations occurred around imperfectly matched cis-acting elements (cre-like sites) in genes that are mainly involved in carbon and secondary metabolism pathways. The comparative metabolomics and transcriptome results revealed that carbon is likely transferred to some pigments, such as riboflavin, carotenoid, and lycopene, or non-ribosomal peptides, such as siderophore, surfactin, myxochelin, and bacilysin, through the pentose phosphate and amino acid metabolism pathways. Collectively, these findings suggested that the mutation of global cre-like sequences in the genome might alter carbon flow, thereby allowing beneficial biological interactions between the rhizobacteria and plants.
Collapse
Affiliation(s)
- Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Mingkun Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Jiaxun Wei
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Ziwen Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, People’s Republic of China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| |
Collapse
|
5
|
Zhang J, Zhu Y, Wheeler T, Dever JK. Development and validation of allele-specific PCR-based SNP typing in a gene on chromosome D03 conferring resistance to Fusarium wilt race 4 in Upland cotton (Gossypium hirsutum). Mol Genet Genomics 2023; 298:1579-1589. [PMID: 37923792 DOI: 10.1007/s00438-023-02079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the most important fiber crop for the global textile industry. Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive soil-borne fungal pathogens in cotton. Among eight pathogenic races and other strains, FOV race 4 (FOV4) is the most virulent race in US cotton production. A single nucleotide polymorphism (SNP) in a glutamate receptor-like gene (GhGLR4.8) on chromosome D03 was previously identified and validated to confer resistance to FOV race 7, and targeted genome sequencing demonstrated that it was also associated with resistance to FOV4. The objective of this study was to develop an easy and convenient PCR-based marker assay. To target the resistance SNP, a forward primer for the SNP with a mismatch in the 3rd position was designed for both the resistance (R) and susceptibility (S) alleles, respectively, with addition of 20-mer T7 promoter primer to the 5' end of the forward primer for the R allele. The two forward primers, in combination with each of five common reverse primers, were targeted to amplify amplicons of 50-260 bp in size with R and S alleles differing in 20 bp. Results showed that each of three common reverse primers in combination with the two forward primers produced polymorphic markers between R and S plants that were consistent with the targeted genome sequencing results. The polymorphism was distinctly resolved using both polyacrylamide and agarose gel electrophoreses. In addition, a sequence comparative analysis between the resistance gene and homologous sequences in sequenced tetraploid and diploid A and D genome species showed that none of the species possessed the resistance gene allele, suggesting its recent origin from a natural point mutation. The allele-specific PCR-based SNP typing method based on a three-primer combination provides a fast and convenient marker-assisted selection method to search and select for FOV4-resistant Upland cotton.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Terry Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Jane K Dever
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| |
Collapse
|
6
|
Matthews A, Muthukumar SPT, Hamill S, Aitken EAB, Chen A. Impact of inoculum density of Fusarium oxysporum f. sp. zingiberi on symptomatic appearances and yield of ginger ( Zingiber officinale Roscoe). Access Microbiol 2023; 5:000605.v3. [PMID: 37841104 PMCID: PMC10569660 DOI: 10.1099/acmi.0.000605.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is an important horticultural crop valued for its medicinal and culinary properties. Fusarium yellows, caused by the ascomycete fungus Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating soil-borne disease of ginger. It has curtailed ginger production in Australia and around the world, leading to significant economic losses. An integrated approach is required to manage soil-borne diseases such as those caused by Foz. However, little is known about the influence of Foz inoculum on disease severity. This study aimed to establish a minimum threshold level of spores per gram of soil required for plant infection and to develop and evaluate a pot inoculation method for screening large numbers of plants in a controlled environment. To achieve this, the dominant Australian ginger cultivar Canton was inoculated with 101, 103, 105, 106 and 107 microconidia g-1 soil. The inoculum density was positively associated with leaf and stem yellows, and rhizome discolouration, and negatively associated with root length and rhizome weight. The lowest threshold required for plant infection was 101 microconidia g-1 soil, which may provide an important basis for outbreaks of Foz in the field. This finding adds significantly to our knowledge of the impact of soil health on ginger production, thereby contributing to the integrated management of Foz. When used at a high dose, this method can facilitate reliable and accurate screening of Foz-susceptible ginger genotypes in a controlled environment.
Collapse
Affiliation(s)
- Andrea Matthews
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Sharan P. T. Muthukumar
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Sharon Hamill
- Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD 4560, Australia
| | - Elizabeth A. B. Aitken
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Andrew Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
7
|
Zhang J, Zhu Y, Wheeler T, Dever JK, Hake K. Targeted development of diagnostic SNP markers for resistance to Fusarium wilt race 4 in Upland cotton (Gossypium hirsutum). Mol Genet Genomics 2023; 298:895-903. [PMID: 37120777 DOI: 10.1007/s00438-023-02024-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Fusarium wilt caused by the soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) has become one of the most important emerging diseases in US cotton production. Numerous QTLs have been reported for resistance to FOV; however, no major FOV4-resistance QTL or gene has been identified and used in breeding Upland cotton (Gossypium hirsutum) for FOV4 resistance. In this study, a panel of 223 Chinese Upland cotton accessions was evaluated for FOV4 resistance based on seedling mortality rate (MR) and stem and root vascular discoloration (SVD and RVD). SNP markers were developed based on targeted genome sequencing using AgriPlex Genomics. The chromosome region at 2.130-2.292 Mb on D03 was significantly correlated with both SVD and RVD but not with MR. Based on the two most significant SNP markers, accessions homozygous for AA or TT SNP genotype averaged significantly lower SVD (0.88 vs. 2.54) and RVD (1.46 vs. 3.02) than those homozygous for CC or GG SNP genotype. The results suggested that a gene or genes within the region conferred resistance to vascular discoloration caused by FOV4. The Chinese Upland accessions had 37.22% homozygous AA or TT SNP genotype and 11.66% heterozygous AC or TG SNP genotype, while 32 US elite public breeding lines all had the CC or GG SNP genotype. Among 463 obsolete US Upland accessions, only 0.86% possessed the AA or TT SNP genotype. This study, for the first time, has developed diagnostic SNPs for marker-assisted selection and identified FOV4-resistant Upland germplasms with the SNPs.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Terry Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Jane K Dever
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Kater Hake
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| |
Collapse
|
8
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|