1
|
Wang W, Liu Y, Kang Y, Liu W, Li S, Wang Z, Xia X, Chen X, Qian L, Xiong X, Liu Z, Guan C, He X. Genome-wide characterization of LEA gene family reveals a positive role of BnaA.LEA6.a in freezing tolerance in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2024; 24:433. [PMID: 38773359 PMCID: PMC11106994 DOI: 10.1186/s12870-024-05111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.
Collapse
Affiliation(s)
- Weiping Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Kang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shun Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhonghua Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyan Xia
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaoyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xin He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
2
|
Zhao X, Zhu H, Liu F, Wang J, Zhou C, Yuan M, Zhao X, Li Y, Teng W, Han Y, Zhan Y. Integrating Genome-Wide Association Study, Transcriptome and Metabolome Reveal Novel QTL and Candidate Genes That Control Protein Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1128. [PMID: 38674535 PMCID: PMC11054237 DOI: 10.3390/plants13081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Protein content (PC) is crucial to the nutritional quality of soybean [Glycine max (L.) Merrill]. In this study, a total of 266 accessions were used to perform a genome-wide association study (GWAS) in three tested environments. A total of 23,131 high-quality SNP markers (MAF ≥ 0.02, missing data ≤ 10%) were identified. A total of 40 association signals were significantly associated with PC. Among them, five novel quantitative trait nucleotides (QTNs) were discovered, and another 32 QTNs were found to be overlapping with the genomic regions of known quantitative trait loci (QTL) related to soybean PC. Combined with GWAS, metabolome and transcriptome sequencing, 59 differentially expressed genes (DEGs) that might control the change in protein content were identified. Meantime, four commonly upregulated differentially abundant metabolites (DAMs) and 29 commonly downregulated DAMs were found. Remarkably, the soybean gene Glyma.08G136900, which is homologous with Arabidopsis hydroxyproline-rich glycoproteins (HRGPs), may play an important role in improving the PC. Additionally, Glyma.08G136900 was divided into two main haplotype in the tested accessions. The PC of haplotype 1 was significantly lower than that of haplotype 2. The results of this study provided insights into the genetic mechanisms regulating protein content in soybean.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Hanhan Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Jie Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China;
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China;
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| |
Collapse
|
3
|
Tian F, Wang J, Ding F, Wang L, Yang Y, Bai X, Tan C, Liao X. Comparative transcriptomics and proteomics analysis of the symbiotic germination of Paphiopedilum barbigerum with Epulorhiza sp. FQXY019. Front Microbiol 2024; 15:1358137. [PMID: 38562471 PMCID: PMC10982344 DOI: 10.3389/fmicb.2024.1358137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Paphiopedilum barbigerum is currently the rarest and most endangered species of orchids in China and has significant ornamental value. The mature seeds of P. barbigerum are difficult to germinate owing to the absence of an endosperm and are highly dependent on mycorrhizal fungi for germination and subsequent development. However, little is known about the regulation mechanisms of symbiosis and symbiotic germination of P. barbigerum seeds. Methods Herein, transcriptomics and proteomics were used to explore the changes in the P. barbigerum seeds after inoculation with (FQXY019 treatment group) or without (control group) Epulorhiza sp. FQXY019 at 90 days after germination. Results Transcriptome sequencing revealed that a total of 10,961 differentially expressed genes (DEGs; 2,599 upregulated and 8,402 downregulated) were identified in the control and FQXY019 treatment groups. These DEGs were mainly involved in carbohydrate, fatty acid, and amino acid metabolism. Furthermore, the expression levels of candidate DEGs related to nodulin, Ca2+ signaling, and plant lectins were significantly affected in P. barbigerum in the FQXY019 treatment groups. Subsequently, tandem mass tag-based quantitative proteomics was performed to recognize the differentially expressed proteins (DEPs), and a total of 537 DEPs (220 upregulated and 317 downregulated) were identified that were enriched in processes including photosynthesis, photosynthesis-antenna proteins, and fatty acid biosynthesis and metabolism. Discussion This study provides novel insight on the mechanisms underlying the in vitro seed germination and protocorm development of P. barbigerum by using a compatible fungal symbiont and will benefit the reintroduction and mycorrhizal symbiotic germination of endangered orchids.
Collapse
Affiliation(s)
- Fan Tian
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Fangjun Ding
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Lianhui Wang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Yanbing Yang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Xinxiang Bai
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Chengjiang Tan
- Guizhou Maolan National Nature Reserve Administration, Libo, Guizhou, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Zhao Q, Wu J, Lan L, Shahid M, Qasim MU, Yu K, Zhang C, Fan C, Zhou Y. Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:256. [PMID: 38010528 DOI: 10.1007/s00122-023-04501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
KEY MESSAGE By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Lei Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Félix JW, Granados-Alegría MI, Gómez-Tah R, Tzec-Simá M, Ruíz-May E, Canto-Canché B, Zamora-Briseño JA, Bojórquez-Velázquez E, Oropeza-Salín C, Islas-Flores I. Proteome Landscape during Ripening of Solid Endosperm from Two Different Coconut Cultivars Reveals Contrasting Carbohydrate and Fatty Acid Metabolic Pathway Modulation. Int J Mol Sci 2023; 24:10431. [PMID: 37445609 DOI: 10.3390/ijms241310431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Cocos nucifera L. is a crop grown in the humid tropics. It is grouped into two classes of varieties: dwarf and tall; regardless of the variety, the endosperm of the coconut accumulates carbohydrates in the early stages of maturation and fatty acids in the later stages, although the biochemical factors that determine such behavior remain unknown. We used tandem mass tagging with synchronous precursor selection (TMT-SPS-MS3) to analyze the proteomes of solid endosperms from Yucatan green dwarf (YGD) and Mexican pacific tall (MPT) coconut cultivars. The analysis was conducted at immature, intermediate, and mature development stages to better understand the regulation of carbohydrate and lipid metabolisms. Proteomic analyses showed 244 proteins in YGD and 347 in MPT; from these, 155 proteins were shared between both cultivars. Furthermore, the proteomes related to glycolysis, photosynthesis, and gluconeogenesis, and those associated with the biosynthesis and elongation of fatty acids, were up-accumulated in the solid endosperm of MPT, while in YGD, they were down-accumulated. These results support that carbohydrate and fatty acid metabolisms differ among the developmental stages of the solid endosperm and between the dwarf and tall cultivars. This is the first proteomics study comparing different stages of maturity in two contrasting coconut cultivars and may help in understanding the maturity process in other palms.
Collapse
Affiliation(s)
- Jean Wildort Félix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - María Inés Granados-Alegría
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Carlos Oropeza-Salín
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|