1
|
Leite Dias S, Rizzo P, D’Auria JC, Kochevenko A. Efficient Agrobacterium-Mediated Methods for Transient and Stable Transformation in Common and Tartary Buckwheat. Int J Mol Sci 2025; 26:4425. [PMID: 40362662 PMCID: PMC12072717 DOI: 10.3390/ijms26094425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Buckwheat is a promising crop with grains that are rich in nutrients and bioactive compounds. Genome sequence data for common and Tartary buckwheat have recently become available. Currently, there is a critical need for the development of a simple and reliable transient gene expression protocol, as well as a stable genetic transformation method, to facilitate metabolic engineering of bioactive compounds, functional analysis of genes, targeted editing, and, in a long-term perspective, to accelerate the breeding process in buckwheat. In this paper, we report optimized methods for Agrobacterium-mediated transient and stable transformation of Fagopyrum esculentum and F. tartaricum. Leaf and cotyledon tissues were infiltrated with an A. tumefaciens-bearing construct containing eGFP and GUS reporter genes. Histochemical staining and Western blotting were used to confirm the expression of reporter proteins. We also demonstrate the usefulness of the developed method for engineering the gramine biosynthetic pathway in buckwheat. HvAMIS and HvNMT genes were transiently expressed in buckwheat leaves, and the de novo production of gramine was confirmed by LC-MS. Moreover, in planta genetic transformation of common and Tartary buckwheat with a reporter gene (eGFP) and selectable marker gene (NptII) was achieved by Agrobacterium-mediated vacuum infiltration. Genomic integration of the construct was confirmed by polymerase chain reaction (PCR), whereas the production of eGFP was confirmed by fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - John Charles D’Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.L.D.); (P.R.)
| | - Andriy Kochevenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.L.D.); (P.R.)
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Lombe BK, Zhou T, Caputi L, Ploss K, O'Connor SE. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids. Angew Chem Int Ed Engl 2025; 64:e202418306. [PMID: 39508515 DOI: 10.1002/anie.202418306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Quinine is a historically important natural product containing a methoxy group that has been assumed to be incorporated at a late pathway stage. Here we show that the methoxy group in quinine and related alkaloids is introduced onto the starting substrate tryptamine. Feeding studies definitively show that 5-methoxytryptamine is utilized as a quinine biosynthetic intermediate in planta. We discover the biosynthetic genes that encode the responsible oxidase and methyltransferase, and we use these genes to reconstitute the early steps of the alkaloid biosynthetic pathway in Nicotiana benthamiana to produce a mixture of methoxylated and non-methoxylated alkaloid intermediates. Importantly, we show that the co-occurrence of both tryptamine and 5-methoxytryptamine substrates, along with the substrate promiscuity of downstream pathway enzymes, enable parallel formation of both methoxylated and non-methoxylated alkaloids.
Collapse
Affiliation(s)
- Blaise Kimbadi Lombe
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Tingan Zhou
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Kerstin Ploss
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
4
|
Liyanage NS, Awwad F, Gonçalves dos Santos KC, Jayawardena TU, Mérindol N, Desgagné-Penix I. Navigating Amaryllidaceae alkaloids: bridging gaps and charting biosynthetic territories. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:16-34. [PMID: 38652148 PMCID: PMC11659181 DOI: 10.1093/jxb/erae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Amaryllidaceae alkaloid (AA) biosynthesis has garnered significant attention in recent years, particularly with the commercialization of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last eight decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterization of biochemical pathways, and an understanding of the environmental stimuli and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite numerous studies, there remain significant gaps in understanding the biosynthesis of AAs in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathways and facilitate their production. This review aims to provide a comprehensive summary of the current state of knowledge on AA biosynthesis, from elicitation of expression of transcription factors in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.
Collapse
Affiliation(s)
- Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
5
|
Golubova D, Tansley C, Su H, Patron NJ. Engineering Nicotiana benthamiana as a platform for natural product biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102611. [PMID: 39098308 DOI: 10.1016/j.pbi.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Nicotiana benthamiana is a model plant, widely used for research. The susceptibility of young plants to Agrobacterium tumefaciens has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of N. benthamiana for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.
Collapse
Affiliation(s)
- D Golubova
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C Tansley
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - H Su
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - N J Patron
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
6
|
Gholizadeh F, Darkó É, Benczúr K, Hamow K, Dernovics M, Nagy K, Janda T, Rady M, Gohari G, Pál M, Le V, Szalai G. Growth light substantially affects both primary and secondary metabolic processes in Catharanthus roseus plants. PHOTOSYNTHETICA 2023; 61:451-460. [PMID: 39649484 PMCID: PMC11586840 DOI: 10.32615/ps.2023.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 12/10/2024]
Abstract
Common periwinkle (Catharanthus roseus L.) is an important medicinal plant used by the pharmaceutical industry. The present work aimed to determine the effect of low light intensity on the primary and secondary metabolic processes, using various photosynthesis and targeted and untargeted analytical techniques. Growth light had only limited effects on the photosynthetic electron transport processes, although membrane stability seemed slightly higher in plants growing under higher light conditions. The reduced growth light caused a reduction in certain primary metabolites, including amino acids and sugars, and it also reduced the contents of most of the phenolic compounds investigated in the present experiments. Interestingly, the differences in the growth light caused a much less pronounced difference in the alkaloid contents than that found in the flavonoid contents. However, besides the growth light, genotypic differences, most evident in flower colour, also affected some metabolic processes, including primary and secondary processes.
Collapse
Affiliation(s)
- F. Gholizadeh
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - É. Darkó
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Benczúr
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K.Á. Hamow
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M. Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - K. Nagy
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - T. Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - M.R. Rady
- Department of Plant Biotechnology, National Research Centre, 33 El Behouth St. (former El-Tahrir St.), Dokki, P.O. 12622 Giza, Egypt
| | - G. Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - M. Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| | - V.N. Le
- Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Sciences and Technology (VAST), 10072 Hanoi, Vietnam
| | - G. Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, H-2462 Brunszvik u. 2., Martonvásár, Hungary
| |
Collapse
|
7
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
8
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
9
|
Fan M, Zou L, Tian K, Chen G, Cheng K, Li Y. Chemistry, bioactivity, biosynthesis, and total synthesis of stemmadenine alkaloids. Nat Prod Rep 2023; 40:1022-1044. [PMID: 36728407 DOI: 10.1039/d2np00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to July 2022Stemmadenine alkaloids are a restrictive sub-group of monoterpene indole alkaloids, represented by two congeners: stemmadenine and vallesamine. Their skeleton is defined by the cleavage of the C-3-C-7 bond of the Strychnos group's pentacyclic scaffold in monoterpene indole alkaloids. The parent alkaloid stemmadenine acts as a key intermediate in the biosynthesis of several major monoterpene indole alkaloid families, including regular Strychnos alkaloids, Aspidosperma alkaloids, and Iboga alkaloids. In this review, a complete coverage of the stemmadenine alkaloids, from the early reports till the present day at 2022, are presented, and their diverse biological activities are briefly described. Moreover, the biosynthetic proposal for stemmadenine and the proposed biogenetic conversion of stemmadenine-type alkaloids into vallesamine-type congeners are discussed in detail. Moreover, the successful synthetic strategies to access the strained stemmadenine scaffolds are fully reviewed.
Collapse
Affiliation(s)
- Minghui Fan
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Liangbang Zou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Kaidi Tian
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Guoqing Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Yong Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
10
|
Rizzo P, Chavez BG, Leite Dias S, D'Auria JC. Plant synthetic biology: from inspiration to augmentation. Curr Opin Biotechnol 2023; 79:102857. [PMID: 36502769 DOI: 10.1016/j.copbio.2022.102857] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Although it is still in its infancy, synthetic biology has the capacity to face scientific and societal problems related to modern agriculture. Innovations in cloning toolkits and genetic parts allow increased precision over gene expression in planta. We review the vast spectrum of available technologies providing a practical list of toolkits that take advantage of combinatorial power to introduce/alter metabolic pathways. We highlight that rational design is inspired by deep knowledge of natural and biochemical mechanisms. Finally, we provide several examples in which modern technologies have been applied to address these critical topics. Future applications in plants include not only pathway modifications but also prospects of augmenting plant anatomical features and developmental processes.
Collapse
Affiliation(s)
- Paride Rizzo
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - Benjamin G Chavez
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - Sara Leite Dias
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany
| | - John C D'Auria
- Metabolite Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Correnstr. 3, D-06466 Seeland, Germany.
| |
Collapse
|