1
|
Wang C, Fu P, Sun T, Wang Y, Li X, Lan S, Liu H, Gou Y, Shang Q, Li W. Identifying Candidate Genes Related to Soybean ( Glycine max) Seed Coat Color via RNA-Seq and Coexpression Network Analysis. Genes (Basel) 2025; 16:44. [PMID: 39858589 PMCID: PMC11764550 DOI: 10.3390/genes16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare. METHODS In this study, four lines of seed coats with different colors (medium yellow 14, black, green, and brown) were selected from the F2:5 population, with Beinong 108 as the female parent and green bean as the male parent, and the dynamic changes in the anthocyanins in the seed coat were stained with 4-dimethylaminocinnamaldehyde (DMACA) during the grain maturation process (20 days from grain drum to seed harvest). Through RNA-seq of soybean lines with four different colored seed coats at 30 and 50 days after seeding, we can further understand the key pathways and gene regulation modules between soybean seed coats of different colors. RESULTS DMACA revealed that black seed coat soybeans produce anthocyanins first and have the deepest staining. Clustering and principal component analysis (PCA) of the RNA-seq data divided the eight samples into two groups, resulting in 16,456 DEGs, including 5359 TFs. GO and KEGG enrichment analyses revealed that the flavonoid biosynthesis, starch and sucrose metabolism, carotenoid biosynthesis, and circadian rhythm pathways were significantly enriched. We also conducted statistical and expression pattern analyses on the differentially expressed transcription factors. Based on weighted gene coexpression network analysis (WGCNA), we identified seven specific modules that were significantly related to the four soybean lines with different seed coat colors. The connectivity and functional annotation of genes within the modules were calculated, and 21 candidate genes related to soybean seed coat color were identified, including six transcription factor (TF) genes and three flavonoid pathway genes. CONCLUSIONS These findings provide a theoretical basis for an in-depth understanding of the molecular mechanisms underlying differences in soybean seed coat color and provide new genetic resources.
Collapse
Affiliation(s)
- Cheng Wang
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Pingchun Fu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Tingting Sun
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yan Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Xueting Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Shulin Lan
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Hui Liu
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| | - Yongji Gou
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs Beijing University of Agriculture, Beijing 102206, China; (P.F.); (Y.W.); (Y.G.)
| | - Weiyu Li
- College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China; (C.W.); (T.S.); (X.L.); (S.L.); (H.L.)
| |
Collapse
|
2
|
Wei J, Zeng Z, Song C, Lv Q, Chen G, Mo G, Gong L, Jin S, Huang R, Huang B. Color-induced changes in Chrysanthemum morifolium: an integrative transcriptomic and metabolomic analysis of petals and non-petals. FRONTIERS IN PLANT SCIENCE 2024; 15:1498577. [PMID: 39759235 PMCID: PMC11695349 DOI: 10.3389/fpls.2024.1498577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Chrysanthemum morifolium (CM), renowned for its diverse and vibrant varieties, holds significant ornamental and medicinal value. Despite this, the core regulatory mechanisms underlying its coloration, especially in non-petal tissues (i.e., the parts of CM that do not include petals, such as the reproductive tissues, receptacle and calyx), have been insufficiently studied. In this study, we performed transcriptomic and metabolomic analyses on yellow, gold, and white CM petals, as well as non-petal tissues, to investigate the molecular processes driving color variation. A total of 90 differential metabolites were identified, with flavonoids, their derivatives, and lipids emerging as the predominant components of the metabolic profile. At the transcriptional level, 38 pathways were significantly enriched based on the expression of differential genes. The combined metabolomic and transcriptomic analyses revealed that glycerophospholipid metabolism, primarily involving lipids, served as a key regulatory pathway for both petal and non-petal parts across different tissue colors. Notably, white CM exhibited marked differences from their gold and yellow counterparts at both the metabolic and transcriptional levels. These findings offer critical insights into the molecular mechanisms governing CM coloration and provide a foundation for optimizing future breeding efforts.
Collapse
Affiliation(s)
- Jianhong Wei
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Guoyan Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, China
| | - Ling Gong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Shuna Jin
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Rongzeng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Bisheng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| |
Collapse
|
3
|
Yang L, Yang Q, Zhang L, Ren F, Zhang Z, Jia Q. Integrated Metabolomics and Transcriptomics Analysis of Flavonoid Biosynthesis Pathway in Polygonatum cyrtonema Hua. Molecules 2024; 29:2248. [PMID: 38792110 PMCID: PMC11124200 DOI: 10.3390/molecules29102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.
Collapse
Affiliation(s)
- Luyun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingwen Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengxiao Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Ishikawa C, Date Y, Umeda M, Tarumoto Y, Okubo M, Morimitsu Y, Tamura Y, Nishiba Y, Ono H. A Data-Driven Approach to Sugarcane Breeding Programs with Agronomic Characteristics and Amino Acid Constituent Profiling. Metabolites 2024; 14:243. [PMID: 38668371 PMCID: PMC11052186 DOI: 10.3390/metabo14040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sugarcane (Saccharum spp. hybrids) and its processed products have supported local industries such as those in the Nansei Islands, Japan. To improve the sugarcane quality and productivity, breeders select better clones by evaluating agronomic characteristics, such as commercially recoverable sugar and cane yield. However, other constituents in sugarcane remain largely unutilized in sugarcane breeding programs. This study aims to establish a data-driven approach to analyze agronomic characteristics from breeding programs. This approach also determines a correlation between agronomic characteristics and free amino acid composition to make breeding programs more efficient. Sugarcane was sampled in clones in the later stage of breeding selection and cultivars from experimental fields on Tanegashima Island. Principal component analysis and hierarchical cluster analysis using agronomic characteristics revealed the diversity and variability of each sample, and the data-driven approach classified cultivars and clones into three groups based on yield type. A comparison of free amino acid constituents between these groups revealed significant differences in amino acids such as asparagine and glutamine. This approach dealing with a large volume of data on agronomic characteristics will be useful for assessing the characteristics of potential clones under selection and accelerating breeding programs.
Collapse
Affiliation(s)
- Chiaki Ishikawa
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yasuhiro Date
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan; (Y.D.); (H.O.)
| | - Makoto Umeda
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Annou 1742-1, Nishinoomote, Kagoshima 891-3102, Japan; (M.U.); (Y.T.); (M.O.)
| | - Yusuke Tarumoto
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Annou 1742-1, Nishinoomote, Kagoshima 891-3102, Japan; (M.U.); (Y.T.); (M.O.)
| | - Megumi Okubo
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Annou 1742-1, Nishinoomote, Kagoshima 891-3102, Japan; (M.U.); (Y.T.); (M.O.)
| | - Yasujiro Morimitsu
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Yasuaki Tamura
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), National Agriculture and Food Research Organization, 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514, Japan;
| | - Yoichi Nishiba
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 2421 Suya, Koshi, Kumamoto 861-1192, Japan;
| | - Hiroshi Ono
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan; (Y.D.); (H.O.)
| |
Collapse
|
5
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
6
|
Zhang L, Ma XG. A Comprehensive Review on Biotransformation, Interaction, and Health of Gut Microbiota and Bioactive Components. Comb Chem High Throughput Screen 2024; 27:1551-1565. [PMID: 37916626 DOI: 10.2174/0113862073257733231011072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The relationship between gut microbiota and bioactive components has become the research focus in the world. We attempted to clarify the relationship between biotransformation and metabolites of gut microbiota and bioactive components, and explore the metabolic pathway and mechanism of bioactive ingredients in vivo, which will provide an important theoretical basis for the clinical research of bioactive ingredients and rationality of drugs, and also provide an important reference for the development of new drugs with high bioavailability. METHODS The related references of this review on microbiota and bioactive components were collected from both online and offline databases, such as ScienceDirect, PubMed, Elsevier, Willy, SciFinder, Google Scholar, Web of Science, Baidu Scholar, SciHub, Scopus, and CNKI. RESULTS This review summarized the biotransformation of bioactive components under the action of gut microbiota, including flavonoids, terpenoids, phenylpropanoids, alkaloids, steroids, and other compounds. The interaction of bioactive components and gut microbiota is a key link for drug efficacy. Relevant research is crucial to clarify bioactive components and their mechanisms, which involve the complex interaction among bioactive components, gut microbiota, and intestinal epithelial cells. This review also summarized the individualized, precise, and targeted intervention of gut microbiota in the field of intestinal microorganisms from the aspects of dietary fiber, microecological agents, fecal microbiota transplantation, and postbiotics. It will provide an important reference for intestinal microecology in the field of nutrition and health for people. CONCLUSION To sum up, the importance of human gut microbiota in the research of bioactive components metabolism and transformation has attracted the attention of scholars all over the world. It is believed that with the deepening of research, human gut microbiota will be more widely used in the pharmacodynamic basis, drug toxicity relationship, new drug discovery, drug absorption mechanism, and drug transport mechanism in the future.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Medical Nursing, Jiyuan Vocational and Technical College, 459000 Jiyuan, Henan, P.R. China
| | - Xiao-Gen Ma
- Department of Medical Nursing, Jiyuan Vocational and Technical College, 459000 Jiyuan, Henan, P.R. China
| |
Collapse
|
7
|
Fallah N, Pang Z, Lin Z, Lin W, Mbuya SN, Abubakar AY, Fabrice KMA, Zhang H. Plant growth and stress-regulating metabolite response to biochar utilization boost crop traits and soil health. FRONTIERS IN PLANT SCIENCE 2023; 14:1271490. [PMID: 37900767 PMCID: PMC10600501 DOI: 10.3389/fpls.2023.1271490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Introduction The utilization of biochar (BC) as a soil amendment in agriculture has gained significant traction among many farmers and researchers, primarily due to its eco-friendly role in boosting crop output. However, the performance of specific metabolites (e.g., zeatin, melatonin, sucrose, and phenyllactic acid) in the various tissues of sugarcane plant (leaf, stem, and root) and rhizosphere soil-deemed plant growth and stress regulators in a long-term BC-amended field remains poorly understood. Additionally, literature on the shift in soil attributes and crop growth triggered by the strong response of these bioactive compounds to longterm BC utilization remains undocumented. Methods Metabolome integrated with highthroughput sequencing analyses were conducted to identify and quantify the performance of plant growth and stress-regulating metabolites in a long-term BC-amended field. Additionally, we investigated how the response of these compounds to BC-treated soil influences crop traits and soil biochemical properties. Results We also identified and quantified the performance of pathogenic bacteria and unraveled the association between these compounds and potential plant growth-promoting bacteria. The BC-supplemented soil significantly boosted the crop traits, including brix, sucrose content, and chlorophyll, as well as soil nutrients, such as soil total nitrogen (TN), ammonium (NH4 +-N), and nitrate (NO3 --N). We also noticed that metabolite-deemed plant growth and stress regulators, including melatonin and phenyllactic acid, were enriched considerably in the stem and root tissues of the BC-amended soil. Zeatin in the leaf, stem, and root tissues exhibited the same trend, followed by sucrose in the leaf tissue of the BC-treated soil, implying that the strong response of these compounds to BC utilization contributed to the promotion of crop traits and soil quality. Pathogenic bacteria belonging to Proteobacteria and Acidobacteria were suppressed under the BC-supplemented soil, especially in the root tissue and rhizosphere soil, whereas plant growth-regulating bacteria, mainly Bradyrhizobium, responded strongly and positively to several metabolites. Discussion Our finding provides valuable information for agronomists, farmers, and environmentalists to make informed decisions about crop production, land use, and soil management practices. Proper soil assessment and understanding of the interaction between the attributes of soil, BC, and metabolites are essential for promoting sustainable agriculture practices and land conservation.
Collapse
Affiliation(s)
- Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaoli Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Ahmad Yusuf Abubakar
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kabore Manegdebwaoga Arthur Fabrice
- Fujian Provincial Key Laboratory of Agro-ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Chen J, Tang W, Li C, Kuang D, Xu X, Gong Y, Liu F, Gao S. Multi-omics analysis reveals the molecular basis of flavonoid accumulation in fructus of Gardenia (Gardenia jasminoides Ellis). BMC Genomics 2023; 24:588. [PMID: 37794356 PMCID: PMC10548582 DOI: 10.1186/s12864-023-09666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The fruits of Gardenia are rich in flavonoids and geniposides, which have various pharmacological effects such as antioxidant, anti-inflammatory and anticancer. In this study, we analyzed the transcriptome and metabolome of gardenia peel and kernel at different growth stages, revealed the regulatory network related to flavonoid synthesis, and identified the key regulatory genes. RESULTS The results showed that in terms of flavonoid metabolic pathways, gardenia fruits mainly synthesized cinnamic acid through the phenylpropanoid pathway, and then synthesized flavonoids through the action of catalytic enzymes such as 4-coumaroyl-CoA ligase, chalcone synthase, chalcone isomerase and flavanol synthase, respectively. In addition, we found that the metabolomics data showed a certain spatial and temporal pattern in the expression of genes related to the flavonoid metabolism pathway and the relative content of metabolites, which was related to the development and ripening process of the fruit. CONCLUSIONS In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.
Collapse
Affiliation(s)
- Jianrong Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Weizhuo Tang
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Chunyan Li
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Ding Kuang
- Hunan Yangli Agriculture and Forestry Sci-Tech Co., Ltd, Yueyang, China
| | - Xiaojiang Xu
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Yuan Gong
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Fang Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha, China.
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
10
|
Nong Q, Malviya MK, Solanki MK, Lin L, Xie J, Mo Z, Wang Z, Song X, Huang X, Li C, Li Y. Integrated metabolomic and transcriptomic study unveils the gene regulatory mechanisms of sugarcane growth promotion during interaction with an endophytic nitrogen-fixing bacteria. BMC PLANT BIOLOGY 2023; 23:54. [PMID: 36694111 PMCID: PMC9872334 DOI: 10.1186/s12870-023-04065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sugarcane growth and yield are complex biological processes influenced by endophytic nitrogen-fixing bacteria, for which the molecular mechanisms involved are largely unknown. In this study, integrated metabolomic and RNA-seq were conducted to investigate the interaction between an endophytic bacterial strain, Burkholderia GXS16, and sugarcane tissue culture seedlings. RESULTS During treatment, the colonization of GXS16 in sugarcane roots were determined, along with the enhanced activities of various antioxidant enzymes. Accordingly, 161, 113, and 37 differentially accumulated metabolites (DAMs) were found in the pairwise comparisons of adjacent stages. In addition, transcriptomic analyses obtained 1,371 (IN-vs-CN), 1,457 (KN-vs-IN), and 365 (LN-vs-KN) differentially expressed genes (DEGs), which were mainly involved in the pathways of glutathione metabolism and carbon metabolism. We then assessed the pattern of metabolite accumulation and gene expression in sugarcane during GXS16 colonization. The results showed that both DAMs and DGEs in the upregulated expression profiles were involved in the flavonoid biosynthesis pathway. Overall, p-coumaroyl-CoA in sugarcane roots transferred into homoeriodictyol chalcone and 5-deoxyleucopelargonidin due to the upregulation of the expression of genes shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), and phlorizin synthase (PGT1). CONCLUSIONS This study provides insights into the gene regulatory mechanisms involved in the interaction between GXS16 and sugarcane roots, which will facilitate future applications of endophytic nitrogen-fixing bacteria to promote crop growth.
Collapse
Affiliation(s)
- Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zhanghong Mo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zeping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
11
|
Zeng J, Chen C, Chen M, Chen J. Comparative transcriptomic and metabolomic analyses reveal the delaying effect of naringin on postharvest decay in citrus fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1045857. [PMID: 36531365 PMCID: PMC9748555 DOI: 10.3389/fpls.2022.1045857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Naringin exhibits antioxidant capacity and can partially inhibit pathogens in many horticultural products, such as citrus fruit; however, the effects of naringin on the storage quality and mechanisms that regulate senescence in citrus fruit have not been comprehensively analyzed. METHODS AND RESULTS In this study, exogenous naringin treatment was found to significantly delay citrus fruit disease, decreasing the H2O2 content, increasing the antioxidant capacity and maintaining the quality of the fruit. Metabolomic analysis of citrus peel indicated the vast majority (325) of metabolites belonging to flavonoids. Moreover, the auraptene, butin, naringenin, and luteolin derivative levels within the phenylpropanoid pathway were significantly higher in the naringin-treated fruit than in the control fruit. Transcriptomic analysis also revealed that twelve genes in the phenylpropanoid and flavonoid biosynthesis pathways were significantly upregulated. Further analysis with a co-expression network revealed significant correlation between these differential genes and metabolites. Additionally, MYC and WRKY, screened from the MAPK signaling pathway, may contribute to naringin-induced disease resistance. CONCLUSION In conclusion, naringin treatment can efficiently delay decay and maintain the quality of citrus fruit, mainly by promoting metabolites accumulation, and upregulating differentially expressed genes in phenylpropanoid and flavonoid biosynthesis pathway. This study provides a better understanding of the regulatory mechanisms through which naringin delays citrus fruit decay and maintains fruit quality.
Collapse
Affiliation(s)
- Jiaoke Zeng
- *Correspondence: Jiaoke Zeng, ; Jinyin Chen,
| | | | | | - Jinyin Chen
- *Correspondence: Jiaoke Zeng, ; Jinyin Chen,
| |
Collapse
|
12
|
Wang J, Zhang L, Qi L, Zhang S. Integrated transcriptomic and metabolic analyses provide insights into the maintenance of embryogenic potential and the biosynthesis of phenolic acids and flavonoids involving transcription factors in Larix kaempferi (Lamb.) Carr. FRONTIERS IN PLANT SCIENCE 2022; 13:1056930. [PMID: 36466286 PMCID: PMC9714495 DOI: 10.3389/fpls.2022.1056930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) techniques have been established for micropropagation or basic research related to plant development in many conifer species. The frequent occurrence of non-embryogenic callus (NEC) during SE has impose constraints on the application of somatic embryogenesis SE in Larix kaempferi (Lamb.) Carr, but the potential regulatory mechanisms are poorly understood. In this study, integrated transcriptomic and metabolomic analyses were performed in embryogenic callus (EC) and NEC originating from a single immature zygotic embryo to better decipher the key molecular and metabolic mechanisms required for embryogenic potential maintenance. The results showed that a total of 13,842 differentially expressed genes (DEGs) were found in EC and NEC, among which many were enriched in plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and the biosynthesis of amino acids pathways. Metabolite profiling showed that 441 differentially accumulated metabolites (DAMs) were identified in EC and NEC. Both EC and NEC had vigorous primary metabolic activities, while most secondary metabolites were upregulated in NEC. Many totipotency-related transcription factor (TF) genes such as BBMs, WUSs, and LEC1 showed higher expression levels in EC compared with NEC, which may result in the higher accumulation of indole 3-acetic acid (IAA) in EC. NEC was characterized by upregulation of genes and metabolites associated with stress responses, such as DEGs involved in jasmonic acid (JA) and ethylene (ETH) biosynthesis and signal transduction pathways, and DEGs and DAMs related to phenylpropanoid and flavonoid biosynthesis. We predicted and analyzed TFs that could target several key co-expressed structural DEGs including two C4H genes, two CcoAOMT genes and three HCT genes involved in phenylpropanoid and flavonoid biosynthesis. Based on the targeted relationship and the co-expression network, two ERFs (Lk23436 and Lk458687), one MYB (Lk34626) and one C2C2-dof (Lk37167) may play an important role in regulating phenolic acid and flavonoid biosynthesis by transcriptionally regulating the expression of these structural genes. This study shows an approach involving integrated transcriptomic and metabolic analyses to obtain insights into molecular events underlying embryogenic potential maintenance and the biosynthesis mechanisms of key metabolites involving TF regulation, which provides valuable information for the improvement of SE efficiency in L. kaempferi.
Collapse
Affiliation(s)
- Junchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Guo C, Wang P, Zhang J, Guo X, Mu X, Du J. Organic acid metabolism in Chinese dwarf cherry [ Cerasus humilis (Bge.) Sok.] is controlled by a complex gene regulatory network. FRONTIERS IN PLANT SCIENCE 2022; 13:982112. [PMID: 36160985 PMCID: PMC9491322 DOI: 10.3389/fpls.2022.982112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The acidity of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] fruits is a key factor affecting the sensory quality of fruits, and it undergoes great changes during development. The molecular mechanisms of these changes are still unclear. In this study, fruits of high-acid 'Nongda4' and low-acid 'DS-1' varieties of Chinese dwarf cherry were used to determine the acid content at different developmental stages. We used transcriptome profiles to identify key genes related to organic acid metabolism and construct their co-expression networks, and we studied the expression patterns of key genes in 36 Chinese dwarf cherry accessions. The titratable acid content of both 'DS-1' and 'Nongda4' fruits first increased and then decreased during fruit development; however, the titratable acid content of 'DS-1' fruits changed to a minor extent. The organic acid content of 'Nongda4' was significantly higher than that of 'DS-1'. The organic acids in mature fruits were mainly malic acid and citric acid. Analysis of the differentially expressed genes related to organic acid metabolism revealed six key genes, including two MDH genes, one tDT gene, one ME gene, one PEPCK gene, and one VHA gene. Weighted gene co-expression network association analysis revealed four modules that were significantly correlated with organic acid content, and 10 key genes with high connectivity among these four modules were screened, including two PK genes, two MDH genes, two ME genes, one PEPCK gene, one VHA gene, one PEPC gene, and one tDT gene. According to the expression patterns of genes in different Chinese dwarf cherry accessions, seven genes were confirmed to represent key genes related to the regulation of organic acids during Chinese dwarf cherry fruit development. These results provide a foundation for further studies on the molecular mechanism of organic acid accumulation in Chinese dwarf cherry fruit.
Collapse
Affiliation(s)
- Caizhen Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Department of Life Sciences, Luliang University, Luliang, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Xiwen Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Junjie Du
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|