1
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Yao S, Zhou B. Enhancing phytoremediation of cadmium and arsenic in alkaline soil by Miscanthus sinensis: A study on the synergistic effect of endophytic fungi and biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171458. [PMID: 38438035 DOI: 10.1016/j.scitotenv.2024.171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
3
|
Tang Y, Li S, Zerpa-Catanho D, Zhang Z, Yang S, Zheng X, Xue S, Kuang X, Liu M, He X, Yi Z, Xiao L. Salt tolerance evaluation and mini-core collection development in Miscanthus sacchariflorus and M. lutarioriparius. FRONTIERS IN PLANT SCIENCE 2024; 15:1364826. [PMID: 38504893 PMCID: PMC10948507 DOI: 10.3389/fpls.2024.1364826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Marginal lands, such as those with saline soils, have potential as alternative resources for cultivating dedicated biomass crops used in the production of renewable energy and chemicals. Optimum utilization of marginal lands can not only alleviate the competition for arable land use with primary food crops, but also contribute to bioenergy products and soil improvement. Miscanthus sacchariflorus and M. lutarioriparius are prominent perennial plants suitable for sustainable bioenergy production in saline soils. However, their responses to salt stress remain largely unexplored. In this study, we utilized 318 genotypes of M. sacchariflorus and M. lutarioriparius to assess their salt tolerance levels under 150 mM NaCl using 14 traits, and subsequently established a mini-core elite collection for salt tolerance. Our results revealed substantial variation in salt tolerance among the evaluated genotypes. Salt-tolerant genotypes exhibited significantly lower Na+ content, and K+ content was positively correlated with Na+ content. Interestingly, a few genotypes with higher Na+ levels in shoots showed improved shoot growth characteristics. This observation suggests that M. sacchariflorus and M. lutarioriparius adapt to salt stress by regulating ion homeostasis, primarily through enhanced K+ uptake, shoot Na+ exclusion, and Na+ sequestration in shoot vacuoles. To evaluate salt tolerance comprehensively, we developed an assessment value (D value) based on the membership function values of the 14 traits. We identified three highly salt-tolerant, 50 salt-tolerant, 127 moderately salt-tolerant, 117 salt-sensitive, and 21 highly salt-sensitive genotypes at the seedling stage by employing the D value. A mathematical evaluation model for salt tolerance was established for M. sacchariflorus and M. lutarioriparius at the seedling stage. Notably, the mini-core collection containing 64 genotypes developed using the Core Hunter algorithm effectively represented the overall variability of the entire collection. This mini-core collection serves as a valuable gene pool for future in-depth investigations of salt tolerance mechanisms in Miscanthus.
Collapse
Affiliation(s)
- Yanmei Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shicheng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Dessireé Zerpa-Catanho
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Zhihai Zhang
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sai Yang
- Orient Science & Technology College of Hunan Agricultural University, Changsha, Hunan, China
| | - Xuying Zheng
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shuai Xue
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xianyan Kuang
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL, United States
| | - Mingxi Liu
- Department of Grassland Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong He
- Hunan Heyi Crop Science Co., Ltd., Changsha, Hunan, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|