1
|
Bolaños-Martínez OC, Urbanetz A, Maresch D, Strasser R, Vimolmangkang S. Engineering Nicotiana benthamiana for production of active cannabinoid synthases via secretory pathway optimization. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00865. [PMID: 39691101 PMCID: PMC11647631 DOI: 10.1016/j.btre.2024.e00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The production of cannabinoid compounds such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) with potential pharmaceutical applications is growing sharply. However, challenges such as the low yield of minor cannabinoids, legal restrictions on cultivation, and the complexity and cost of purification from the Cannabis sativa plant necessitate a biotechnological approach. Since the biosynthetic pathway is disclosed, cannabinoids have been produced in yeast, insect cells and plants mainly by the heterologous expression of tetrahydrocannabinol acid synthase (THCAS). THCAS and cannabidiolic acid synthase (CBDAS) use cannabigerolic acid (CBGA) as a substrate. In this study, we transiently expressed recombinant forms of THCAS and CBDAS in leaves of Nicotiana benthamiana. Our results demonstrate that efficient expression in the secretory pathway relies on replacing the endogenous signal peptide with a heterologous one. Both proteins were successfully secreted to the apoplast. MS-based analysis of the purified proteins revealed that they are heavily glycosylated with mainly Golgi-processed complex type N-glycans. In planta enzymatic removal of N-glycans indicated that glycosylation plays a role for CBDAS protein folding or stability. Finally, in vitro assays with CBGA showed that the plant-made recombinant CBDAS and THCAS are enzymatically active.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Anna Urbanetz
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Mostafaei Dehnavi M, Damerum A, Taheri S, Ebadi A, Panahi S, Hodgin G, Brandley B, Salami SA, Taylor G. Population genomics of a natural Cannabis sativa L. collection from Iran identifies novel genetic loci for flowering time, morphology, sex and chemotyping. BMC PLANT BIOLOGY 2025; 25:80. [PMID: 39838336 PMCID: PMC11748290 DOI: 10.1186/s12870-025-06045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Future breeding and selection of Cannabis sativa L. for both drug production and industrial purposes require a source of germplasm with wide genetic variation, such as that found in wild relatives and progenitors of highly cultivated plants. Limited directional selection and breeding have occurred in this crop, especially informed by molecular markers. RESULTS This study investigated the population genomics of a natural cannabis collection comprising male and female individuals from various climatic zones in Iran. Using Genotyping-By-Sequencing (GBS), we sequenced 228 individuals from 35 populations. The data obtained enabled an association analysis, linking genotypes with key phenotypes such as inflorescence characteristics, flowering time, plant morphology, tetrahydrocannabinol (THC) and cannabidiol (CBD) content, and sex. We detected approximately 23,266 significant high-quality Single Nucleotide Polymorphisms (SNPs), establishing associations between markers and traits. The population structure analysis revealed that Iranian cannabis plants fall into five distinct groups. Additionally, a comparison with global data suggested that the Iranian populations is distinctive and generally closer to marijuana than to hemp, with some populations showing a closer affinity to hemp. The GWAS identified novel genetic loci associated with sex, yield, and chemotype traits in cannabis, which had not been previously reported. CONCLUSION The study's findings highlight the distinct genetic structure of Iranian Cannabis populations. The identification of novel genetic loci associated with important traits suggests potential targets for future breeding programs. This research underscores the value of the Iranian cannabis germplasm as a resource for breeding and selection efforts aimed at improving Cannabis for various uses.
Collapse
Affiliation(s)
- Mahboubeh Mostafaei Dehnavi
- Department of Plant Sciences, University of California, Davis, CA, USA
- Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Annabelle Damerum
- Department of Plant Sciences, University of California, Davis, CA, USA
- Present address, Zymo Research Corp, Irvine, CA, USA
| | - Sadegh Taheri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ebadi
- Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Shadab Panahi
- Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - George Hodgin
- Biopharmaceutical Research Company, Castroville, CA, USA
| | - Brian Brandley
- Biopharmaceutical Research Company, Castroville, CA, USA
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran.
- Industrial and Medical Cannabis Research Institute (IMCRI), Tehran, Iran.
| | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Hancock J, Livingston SJ, Samuels L. Building a biofactory: Constructing glandular trichomes in Cannabis sativa. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102549. [PMID: 38761520 DOI: 10.1016/j.pbi.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
Flowers of Cannabis sativa L. are densely covered with glandular trichomes containing cannabis resin that is used for medicinal and recreational purposes. The highly productive glandular trichomes have been described as 'biofactories.' In this review, we use this analogy to highlight recent advances in cannabis cell biology, metabolomics, and transcriptomics. The biofactory is built by epidermal outgrowths that differentiate into peltate-like glandular trichome heads, consisting of a disc of interconnected secretory cells with unique cellular structures. Cannabinoid and terpenoid products are warehoused in the extracellular storage cavity. Finally, multicellular stalks raise the glandular heads above the epidermis, giving cannabis flower their frosty appearance.
Collapse
Affiliation(s)
- Jessica Hancock
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Mohammad T, Ghogare R, Morton LB, Dhingra A, Potlakayala S, Rudrabhatla S, Dhir SK. Evaluation of Parameters Affecting Agrobacterium-Mediated Transient Gene Expression in Industrial Hemp ( Cannabis sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:664. [PMID: 38475511 DOI: 10.3390/plants13050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Industrial hemp Cannabis sativa L. is an economically important crop mostly grown for its fiber, oil, and seeds. Due to its increasing applications in the pharmaceutical industry and a lack of knowledge of gene functions in cannabinoid biosynthesis pathways, developing an efficient transformation platform for the genetic engineering of industrial hemp has become necessary to enable functional genomic and industrial application studies. A critical step in the development of Agrobacterium tumefaciens-mediated transformation in the hemp genus is the establishment of optimal conditions for T-DNA gene delivery into different explants from which whole plantlets can be regenerated. As a first step in the development of a successful Agrobacterium tumefaciens-mediated transformation method for hemp gene editing, the factors influencing the successful T-DNA integration and expression (as measured by transient β-glucuronidase (GUS) and Green Florescent Protein (GFP) expression) were investigated. In this study, the parameters for an agroinfiltration system in hemp, which applies to the stable transformation method, were optimized. In the present study, we tested different explants, such as 1- to 3-week-old leaves, cotyledons, hypocotyls, root segments, nodal parts, and 2- to 3-week-old leaf-derived calli. We observed that the 3-week-old leaves were the best explant for transient gene expression. Fully expanded 2- to 3-week-old leaf explants, in combination with 30 min of immersion time, 60 µM silver nitrate, 0.5 µM calcium chloride, 150 µM natural phenolic compound acetosyringone, and a bacterial density of OD600nm = 0.4 resulted in the highest GUS and GFP expression. The improved method of genetic transformation established in the present study will be useful for the introduction of foreign genes of interest, using the latest technologies such as genome editing, and studying gene functions that regulate secondary metabolites in hemp.
Collapse
Affiliation(s)
- Tasnim Mohammad
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| | - Rishikesh Ghogare
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lauren B Morton
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| | - Amit Dhingra
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shobha Potlakayala
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA 17057, USA
| | - Sairam Rudrabhatla
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA 17057, USA
| | - Sarwan K Dhir
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| |
Collapse
|
5
|
Fulvio F, Mandolino G, Citti C, Pecchioni N, Cannazza G, Paris R. Phytocannabinoids biosynthesis during early stages of development of young Cannabis sativa L. seedlings: Integrating biochemical and transcription data. PHYTOCHEMISTRY 2023; 214:113793. [PMID: 37479208 DOI: 10.1016/j.phytochem.2023.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Cannabis sativa (L.) is characterized by great genetic and phenotypic diversity, also expressed in the array of bioactive compounds synthesized. Despite its great potential economic interest, knowledge of the biology and genetics of this crop is incomplete, and still many efforts are needed for a complete understanding of the molecular mechanisms regulating its key traits. To better understand the synthesis of these compounds, we analysed the transcription levels of cannabinoid pathway genes during early phases of plant development, then comparing the transcriptional results with a chemical characterization of the same samples. The work was conducted on both industrial and medicinal C. sativa plants, using samples belonging to three different chemotypes. Genes coding for the cannabinoid synthases, involved in the last step of the cannabinoid biosynthetic pathway, were found to be already expressed in the seed, providing a measure of the importance of this metabolism for the plant. Cannabichromenic acid is known as the first cannabinoid accumulating in the seedlings, shortly after emergence, and it was found that there is a good correspondence between transcript accumulation of the cannabichromenic acid synthase gene and accumulation of the corresponding metabolite.
Collapse
Affiliation(s)
- Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy; Department of Sciences of Agriculture, Food Natural Resources and Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Cinzia Citti
- CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Nicola Pecchioni
- CREA-Research Centre for Cereal and Industrial Crops, S.S. 673 Km 25,200, 71122, Foggia, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy; Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy.
| |
Collapse
|
6
|
Reasons and riddance of Agrobacterium tumefaciens overgrowth in plant transformation. Transgenic Res 2023; 32:33-52. [PMID: 36806963 DOI: 10.1007/s11248-023-00338-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation has become routine work across the world to study gene function and the production of genetically modified plants. However, several issues hamper the transformation process in a profound way, both directly and indirectly. One of the major concerns is the overgrowth of Agrobacterium, which occasionally appears after the co-cultivation phase of the explant. This phenomenon is reported in several species and seems to spoil the whole transformation process. There are multiple approaches being employed to counter this unwanted growth of bacteria in a few plant species. In reality, once the overgrowth appears, it becomes nearly impossible to cure it. Hence, for the prevention of this phenomenon, numerous factors are regulated. These factors are: explant nature, A. tumefaciens strain, T-DNA vector, co-cultivation (time and condition), acetosyringone, washing medium, antibiotics (type, concentration, combination, incubation period), etc. In this article, we discuss these factors based on available reports. It can be of immense help in formulating viable strategies to control A. tumefaciens overgrowth.
Collapse
|