1
|
Zhao H, Lin Z, Khansefid M, Tibbits JF, Hayden MJ. Genomic prediction and selection response for grain yield in safflower. Front Genet 2023; 14:1129433. [PMID: 37051598 PMCID: PMC10083426 DOI: 10.3389/fgene.2023.1129433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
In plant breeding programs, multiple traits are recorded in each trial, and the traits are often correlated. Correlated traits can be incorporated into genomic selection models, especially for traits with low heritability, to improve prediction accuracy. In this study, we investigated the genetic correlation between important agronomic traits in safflower. We observed the moderate genetic correlations between grain yield (GY) and plant height (PH, 0.272-0.531), and low correlations between grain yield and days to flowering (DF, -0.157-0.201). A 4%-20% prediction accuracy improvement for grain yield was achieved when plant height was included in both training and validation sets with multivariate models. We further explored the selection responses for grain yield by selecting the top 20% of lines based on different selection indices. Selection responses for grain yield varied across sites. Simultaneous selection for grain yield and seed oil content (OL) showed positive gains across all sites with equal weights for both grain yield and oil content. Combining g×E interaction into genomic selection (GS) led to more balanced selection responses across sites. In conclusion, genomic selection is a valuable breeding tool for breeding high grain yield, oil content, and highly adaptable safflower varieties.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Zibei Lin
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Majid Khansefid
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Josquin F. Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew J. Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|