1
|
Li J, Zhang L, Li C, Chen W, Wang T, Tan L, Qiu Y, Song S, Li B, Li L. The Pentatricopeptide Repeat Protein OsPPR674 Regulates Rice Growth and Drought Sensitivity by Modulating RNA Editing of the Mitochondrial Transcript ccmC. Int J Mol Sci 2025; 26:2646. [PMID: 40141287 PMCID: PMC11941812 DOI: 10.3390/ijms26062646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The P-type pentatricopeptide repeat (PPR) proteins are crucial for RNA editing and post-transcriptional regulation in plant organelles, particularly mitochondria. This study investigates the role of OsPPR674 in rice, focusing on its function in mitochondrial RNA editing. Using CRISPR/Cas9 technology, we generated ppr674 mutant and examined its phenotypic and molecular characteristics. The results indicate that ppr674 exhibits reduced plant height, decreased seed-setting rate, and poor drought tolerance. Further analysis revealed that in the ppr674 mutant, RNA editing at the 299th nucleotide position of the mitochondrial ccmC gene (C-to-U conversion) was abolished. REMSAs showed that GST-PPR674 specifically binds to RNA probes targeting this ccmC-299 site, confirming its role in this editing process. In summary, these results suggest that OsPPR674 plays a pivotal role in mitochondrial RNA editing, emphasizing the significance of PPR proteins in organelle function and plant development.
Collapse
Affiliation(s)
- Jinglei Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Longhui Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Chenyang Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Weijun Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Tiankang Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Lvni Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Yingxin Qiu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Shufeng Song
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Bin Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| | - Li Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (J.L.); (L.T.); (Y.Q.); (S.S.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (L.Z.); (C.L.); (W.C.); (T.W.)
| |
Collapse
|
2
|
Taria S, Arora A, Kumar S, Krishna H, Meena S, Singh B, China Malakondaiah A, S. K, Padaria JC, Singh PK, Alam B, Kumar S, Arunachalam A. Validation of stay-green and stem reserve mobilization QTLs: physiological and gene expression approach. FRONTIERS IN PLANT SCIENCE 2025; 16:1541944. [PMID: 40034149 PMCID: PMC11873102 DOI: 10.3389/fpls.2025.1541944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Introduction Abiotic stress significantly reduces the wheat yield by hindering several physiological processes in plant. Stay-green (SG) and stem reserve mobilization (SRM) are the two key physiological traits, which can contribute significantly to grain filling during stress period. Validation of genomic regions linked to SG and SRM is needed for its subsequent use in marker-assisted selection in breeding program. Methods Using a physiological and gene expression approach, quantitative trait loci (QTLs) for stay-green (SG) and stem reserve mobilization (SRM) were validated in a pot experiment study using contrasting recombinant inbred lines including its parental lines (HD3086/HI1500) in wheat. The experiment was laid down in a completely randomized design under normal (control, drought) and late sown (heat and combined stress) conditions during the 2022-2023 rabi season. Drought stress was imposed by withholding irrigation at the anthesis stage, whereas heat stress was imposed by 1-month late sowing compared to the normal sowing condition. Combined stress was imposed by 1-month late sowing along with restricted irrigation at the flowering stage. Superior lines (HDHI113 and HDHI87) had both SG and SRM traits, whereas inferior lines (HDHI185 and HDHI80) had contrasting traits, i.e., lower SG and SRM traits. HD3086 and HI1500 had SG and SRM traits respectively. Potential candidate genes were identified based on the flanking markers of the mapped QTLs using the BioMart tool in the Ensembl Plants database to validate the identified QTLs. Real-time gene expression was conducted with SG-linked genes in the flag leaf and SRM-linked genes in the peduncle. Results and Discussion In this study, HDHI113 and HDHI87 showed higher expression of SG-related genes in the flag leaf under stress conditions. Furthermore, HDHI113 and HDHI87 maintained higher chlorophyll a content of 7.08 and 6.62 mg/gDW, respectively, and higher net photosynthetic rates (PN) of 17.18 and 16.48 µmol CO2/m2/s, respectively, under the combined stress condition. However, these lines showed higher expression of SRM-linked genes in the peduncle under drought stress, indicating that drought stress aggravates SRM in wheat. HDHI113 and HDHI87 recorded higher 1,000-grain weights and spike weight differences under combined stress, further validating the identified QTLs being linked to SG and SRM traits. Henceforth, the identified QTLs can be transferred to developed wheat varieties through efficient breeding strategies for yield improvement in harsh climate conditions.
Collapse
Affiliation(s)
- Sukumar Taria
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Ajay Arora
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Shashi Meena
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Biswabiplab Singh
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Animireddy China Malakondaiah
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Kousalya S.
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Jasdeep Chatrath Padaria
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Pradeep Kumar Singh
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Badre Alam
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Sushil Kumar
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Ayyanadar Arunachalam
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| |
Collapse
|
3
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Hu YX, Huang A, Li Y, Molloy DP, Huang C. Emerging roles of the C-to-U RNA editing in plant stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112263. [PMID: 39299521 DOI: 10.1016/j.plantsci.2024.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
RNA editing is an important post-transcriptional event in all living cells. Within chloroplasts and mitochondria of higher plants, RNA editing involves the deamination of specific cytosine (C) residues in precursor RNAs to uracil (U). An increasing number of recent studies detail specificity of C-to-U RNA editing as an essential prerequisite for several plant stress-related responses. In this review, we summarize the current understanding of responses and functions of C-to-U RNA editing in plants under various stress conditions to provide theoretical reference for future research.
Collapse
Affiliation(s)
- Yu-Xuan Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - An Huang
- College of Communication and Art Design, Swan College, Central South University of Forestry and Technology, Changsha 410128, China.
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Sallam A, Awadalla RA, Elshamy MM, Börner A, Heikal YM. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population. Comput Struct Biotechnol J 2024; 23:870-882. [PMID: 38356657 PMCID: PMC10864764 DOI: 10.1016/j.csbj.2024.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Drought stress occurred at early growth stages in wheat affecting the following growth stages. Therefore, selecting promising drought-tolerant genotypes with highly adapted traits at the seedling stage is an important task for wheat breeders and geneticists. Few research efforts were conducted on the genetic control for drought-adaptive traits at the seedling stage in wheat. In this study, a set of 146 highly diverse spring wheat core collections representing 28 different countries was evaluated under drought stress at the seedling stage. All genotypes were exposed to drought stress for 13 days by water withholding. Leaf traits including seedling length, leaf wilting, days to wilting, leaf area, and leaf rolling were scored. Moreover, root traits such as root length, maximum width, emergence angle, tip angle, and number of roots were scored. Considerable significant genetic variation was found among all genotypes tested in these experiments. The heritability estimates ranged from 0.74 (leaf witling) to 0.99 (root tip angle). A set of nine genotypes were selected and considered drought-tolerant genotypes. Among all leaf traits, shoot length had significant correlations with all root traits under drought stress. The 146 genotypes were genotyped using the Infinium Wheat 15 K single nucleotide polymorphism (SNP) array and diversity arrays technology (DArT) marker platform. The result of genotyping revealed 12,999 SNPs and 2150 DArT markers which were used to run a genome-wide association study (GWAS). The results of GWAS revealed 169 markers associated with leaf and root traits under drought stress. Out of the 169 markers, 82 were considered major quantitative trait loci (QTL). The GWAS revealed 95 candidate genes were identified with 53 genes showing evidence for drought tolerance in wheat, while the remaining candidate genes were considered novel. No shared markers were found between leaf and root traits. The results of the study provided mapping novel markers associated with new root traits at the seedling stage. Also, the selected genotypes from different countries could be employed in future wheat breeding programs not only for improving adaptive drought-tolerant traits but also for expanding genetic diversity.
Collapse
Affiliation(s)
- Ahmed Sallam
- Resources Genetics and Reproduction, Department GenBank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Rawan A. Awadalla
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Maha M. Elshamy
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Andreas Börner
- Resources Genetics and Reproduction, Department GenBank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
6
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
7
|
Shi SH, Zeeshan M, Shan WN, Qiu CW, Chen ZH, Wu F. Transcriptome and molecular evidence of HvMORF8 conferring drought-tolerance in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109289. [PMID: 39549383 DOI: 10.1016/j.plaphy.2024.109289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Drought is one of the most devastating abiotic stresses worldwide, which severely limits crop yield. Tibetan wild barley is a treasure trove of useful genes for crop improvement including drought tolerance. Here, we detected large-scale changes of gene expression in response to drought stress with a substantial difference among contrasting Tibetan barley genotypes XZ5 (drought-tolerant), XZ54 (drought-sensitive) and cv. Tadmor (drought-tolerant). Drought stress led to upregulations of 142 genes involved in transcription, metabolism, protein synthesis, stress defense, transport and signal transduction in XZ5, but those genes were down-regulated or unchanged in XZ54 and Tadmor. We identified and functionally characterized a novel multiple organellar RNA editing factors 8 (HvMORF8), which was up-regulated by drought stress in XZ5, but unchanged in XZ54 and Tadmor under drought stress. Phylogenetic analysis showed that orthologues of HvMORF8 can be traced back to the closest gymnosperm species such as Cycas micholitzii, implicating a potential evolutionary origin for MORF8 from a common ancestor in early seed plants. Virus-induced HvMORF8 silencing in XZ5 led to hypersensitivity to drought stress, demonstrating it is a positive regulator of drought tolerance in barley. RNA sequencing of BSMV:HvMORF8 and control plants reveals that silencing of HvMORF8 suppresses genes involved in osmolytes transport, cell wall modification and antioxidants, resulting in water metabolism disorder and overaccumulation of reactive oxygen species (ROS) under drought stress. Therefore, we propose HvMORF8-mediated regulatory drought tolerance mechanisms at transcriptomic level in XZ5, providing new insight into the genetic basis of plastid RNA editing function of HvMORF8 for barley drought tolerance.
Collapse
Affiliation(s)
- Shou-Heng Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Zeeshan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Wu-Nian Shan
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
8
|
Zhang R, Cui X, Zhao P. Rapidly Evolved Genes in Three Reaumuria Transcriptomes and Potential Roles of Pentatricopeptide Repeat Superfamily Proteins in Endangerment of R. trigyna. Int J Mol Sci 2024; 25:11065. [PMID: 39456846 PMCID: PMC11508020 DOI: 10.3390/ijms252011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reaumuria genus (Tamaricaceae) is widely distributed across the desert and semi-desert regions of Northern China, playing a crucial role in the restoration and protection of desert ecosystems. Previous studies mainly focused on the physiological responses to environmental stresses; however, due to the limited availability of genomic information, the underlying mechanism of morphological and ecological differences among the Reaumuria species remains poorly understood. In this study, we presented the first catalog of expressed transcripts for R. kaschgarica, a sympatric species of xerophyte R. soongorica. We further performed the pair-wise transcriptome comparison to determine the conserved and divergent genes among R. soongorica, R. kaschgarica, and the relict recretohalophyte R. trigyna. Annotation of the 600 relatively conserved genes revealed that some common genetic modules are employed by the Reaumuria species to confront with salt and drought stresses in arid environment. Among the 250 genes showing strong signs of positive selection, eight pentatricopeptide repeat (PPR) superfamily protein genes were specifically identified, including seven PPR genes in the R. soongorica vs. R. trigyna comparison and one PPR gene in the R. kaschgarica vs. R. trigyna comparison, while the cyclin D3 gene was found in the R. soongorica vs. R. trigyna comparison. These findings suggest that genetic variations in PPR genes may affect the fertility system or compromise the extent of organelle RNA editing in R. trigyna. The present study provides valuable genomic information for R. kaschgarica and preliminarily reveals the conserved genetic bases for the abiotic stress adaptation and interspecific divergent selection in the Reaumuria species. The rapidly evolved PPR and cyclin D3 genes provide new insights on the endangerment of R. trigyna and the leaf length difference among the Reaumuria species.
Collapse
Affiliation(s)
- Ruizhen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoyun Cui
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengshan Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Lu G, Wang W, Zhang S, Yang G, Zhang K, Que Y, Deng L. The first complete mitochondrial genome of Grossulariaceae: Molecular features, structure recombination, and genetic evolution. BMC Genomics 2024; 25:744. [PMID: 39080514 PMCID: PMC11290076 DOI: 10.1186/s12864-024-10654-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Mitochondria play crucial roles in the growth, development, and adaptation of plants. Blackcurrant (Ribes nigrum L.) stands out as a significant berry species due to its rich nutritional profile, medicinal properties, and health benefits. Despite its importance, the mitochondrial genome of blackcurrant remains unassembled. RESULTS This study presents the first assembly of the mitochondrial genome of R. nigrum in the Grossulariaceae family. The genome spans 450,227 base pairs (bp) and encompasses 39 protein-coding genes (PCGs), 19 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). Protein-coding regions constitute 8.88% of the entire genome. Additionally, we identified 180 simple sequence repeats, 12 tandem repeats, and 432 pairs of dispersed repeats. Notably, the dispersed sequence R1 (cotig3, 1,129 bp) mediated genome recombination, resulting in the formation of two major conformations, namely master and double circles. Furthermore, we identified 731 C-to-U RNA editing sites within the PCGs. Among these, cox1-2, nad1-2, and nad4L-2 were associated with the creation of start codons, whereas atp6-718 and rps10-391 were linked to termination codons. We also detected fourteen plastome fragments within the mitogenome, constituting 1.11% of the total length. Phylogenetic analysis suggests that R. nigrum might have undergone multiple genomic reorganization and/or gene transfer events, resulting in the loss of two PCGs (rps2 and rps11) during its evolutionary history. CONCLUSIONS This investigation unveils the molecular characteristics of the R. nigrum mitogenome, shedding light on its evolutionary trajectory and phylogenetic implications. Furthermore, it serves as a valuable reference for evolutionary research and germplasm identification within the genus.
Collapse
Affiliation(s)
- Guilong Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Wenhua Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Shanshan Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Guang Yang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Kun Zhang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Youxiong Que
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lan Deng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China.
| |
Collapse
|
10
|
Meng L, Du M, Zhu T, Li G, Ding Y, Zhang Q. PPR proteins in plants: roles, mechanisms, and prospects for rice research. FRONTIERS IN PLANT SCIENCE 2024; 15:1416742. [PMID: 38993942 PMCID: PMC11236678 DOI: 10.3389/fpls.2024.1416742] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with over 300 members in various species. Nearly all PPR proteins are nuclear-encoded and targeted to the chloroplast and mitochondria, modulating organellar gene expression by participating in RNA metabolism, including mRNA stability, RNA editing, RNA splicing, and translation initiation. Organelle RNA metabolism significantly influences chloroplast and mitochondria functions, impacting plant photosynthesis, respiration, and environmental responses. Over the past decades, PPR proteins have emerged as a research focus in molecular biology due to their diverse roles throughout plant life. This review summarizes recent progress in understanding the roles and molecular mechanisms of PPR proteins, emphasizing their functions in fertility, abiotic and biotic stress, grain quality, and chloroplast development in rice. Furthermore, we discuss prospects for PPR family research in rice, aiming to provide a theoretical foundation for future investigations and applications.
Collapse
Affiliation(s)
- Lingzhi Meng
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Mengxue Du
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Taotao Zhu
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Gang Li
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yi Ding
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Qiang Zhang
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
11
|
Liu K, Xie B, Peng L, Wu Q, Hu J. Profiling of RNA editing events in plant organellar transcriptomes with high-throughput sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:345-357. [PMID: 38149801 DOI: 10.1111/tpj.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
RNA editing is a crucial post-transcriptional modification process in plant organellar RNA metabolism. rRNA removal-based total RNA-seq is one of the most common methods to study this event. However, the lack of commercial kits to remove rRNAs limits the usage of this method, especially for non-model plant species. DSN-seq is a transcriptome sequencing method utilizing duplex-specific nuclease (DSN) to degrade highly abundant cDNA species especially those from rRNAs while keeping the robustness of transcript levels of the majority of other mRNAs, and has not been applied to study RNA editing in plants before. In this study, we evaluated the capability of DSN-seq to reduce rRNA content and profile organellar RNA editing events in plants, as well we used commercial Ribo-off-seq and standard mRNA-seq as comparisons. Our results demonstrated that DSN-seq efficiently reduced rRNA content and enriched organellar transcriptomes in rice. With high sensitivity to RNA editing events, DSN-seq and Ribo-off-seq provided a more complete and accurate RNA editing profile of rice, which was further validated by Sanger sequencing. Furthermore, DSN-seq also demonstrated efficient organellar transcriptome enrichment and high sensitivity for profiling RNA editing events in Arabidopsis thaliana. Our study highlights the capability of rRNA removal-based total RNA-seq for profiling RNA editing events in plant organellar transcriptomes and also suggests DSN-seq as a widely accessible RNA editing profiling method for various plant species.
Collapse
Affiliation(s)
- Kejia Liu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Leilei Peng
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qijia Wu
- Seqhealth Technology Co., Ltd., Wuhan, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
12
|
Dhingra Y, Gupta S, Gupta V, Agarwal M, Katiyar-Agarwal S. The emerging role of epitranscriptome in shaping stress responses in plants. PLANT CELL REPORTS 2023; 42:1531-1555. [PMID: 37481775 DOI: 10.1007/s00299-023-03046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which m6A, Ψ, m5C, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of m6A, m5C, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, m6A and m5C modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007, India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
13
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|