1
|
Lalun VO, Butenko MA. Plant Peptide Ligands as Temporal and Spatial Regulators. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:229-253. [PMID: 40063676 DOI: 10.1146/annurev-arplant-070324-041348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Throughout the life cycle of a plant, numerous responses need to be carefully regulated to ensure proper development and appropriate responses to external stimuli, and plant hormones play a crucial role in this regulation. Since the early 1990s, there has been expansive research elucidating the central role that peptide ligands play as intrinsic short- and long-distance communicators during development and as regulators of phenotypic plasticity. In this review, we focus on recently discovered mechanisms that ensure correct spatial and temporal cellular responses triggered by peptide ligands and provide examples of how peptide processing proteins and apoplastic conditions can regulate peptide activity in a timely manner.
Collapse
Affiliation(s)
- Vilde O Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway; ,
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway; ,
| |
Collapse
|
2
|
Liu J, He F, Chen Z, Liu M, Xiao Y, Wang Y, Cai Y, Du J, Jin W, Liu X. Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice. Sci Rep 2025; 15:426. [PMID: 39747628 PMCID: PMC11696678 DOI: 10.1038/s41598-024-84491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress. The rice SUB gene family consists of 62 members, but it is unknown whether they are involved in the response to cold stress. In this study, we observed that a loss-of-function SUB4 mutant exhibited enhanced cold tolerance at the seedling stage. The sub4 mutant seedlings exhibited improved survival rates and related physiological parameters, including relative electrolyte conductivity, chlorophyll content, malondialdehyde content, and antioxidant enzyme activity. Transcriptomic analysis revealed that differentially expressed genes responsive to cold stress in the sub4 mutants were primarily associated with metabolism and signal transduction. Notably, the majority of cold-responsive genes were associated with cell wall functions, including those related to cell wall organization, chitin catabolic processes, and oxidoreductases. Our findings suggest that SUB4 negatively regulates the cold response in rice seedlings, possibly by modifying the properties of the cell wall.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Fei He
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhicai Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingni Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ying Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - YuMeng Cai
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xuejun Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
3
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Mbanjo EGN, Pasion EA, Jones H, Carandang S, Misra G, Ignacio JC, Kretzschmar T, Sreenivasulu N, Boyd LA. Unravelling marker trait associations linking nutritional value with pigmentation in rice seed. THE PLANT GENOME 2023; 16:e20360. [PMID: 37589249 DOI: 10.1002/tpg2.20360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 08/18/2023]
Abstract
While considerable breeding effort has focused on increasing the yields of staple crops such as rice and the levels of micronutrients such as iron and zinc, breeding to address the problems of the double-burden of malnutrition has received less attention. Pigmented rice has higher nutritional value and greater health benefits compared to white rice. However, the genetic associations underlying pericarp coloration and accumulation of nutritionally valuable compounds is still poorly understood. Here we report the targeted genetic analysis of 364 rice accessions, assessing the genetic relationship between pericarp coloration (measured using multi-spectral imaging) and a range of phenolic compounds with potential nutritional and health-promoting characteristics. A genome-wide association study resulted in the identification of over 280 single nucleotide polymorphisms (SNPs) associated with the traits of interest. Many of the SNPs were associated with more than one trait, colocalization occurring between nutritional traits, and nutritional and color-related traits. Targeted association analysis identified 67 SNPs, located within 52 candidate genes and associated with 24 traits. Six haplotypes identified within the genes Rc/bHLH17 and OsIPT5 indicated that these genes have an important role in the regulation of a wide range of phenolic compounds, and not only those directly conferring pericarp color. These identified genetic linkages between nutritionally valuable phenolic compounds and pericarp color present not only a valuable resource for the enhancement of the nutritional value of rice but an easy method of selection of suitable genotypes.
Collapse
Affiliation(s)
- Edwige Gaby Nkouaya Mbanjo
- International Rice Research Institute (IRRI), Los Baños, Philippines
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Erstelle A Pasion
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Huw Jones
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | - Socorro Carandang
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Gopal Misra
- International Rice Research Institute (IRRI), Los Baños, Philippines
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Tobias Kretzschmar
- International Rice Research Institute (IRRI), Los Baños, Philippines
- Faculty of Science and Engineering, Southern Cross University, East Lismore, New South Wales, Australia
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| |
Collapse
|