1
|
Yang C, Zhong W, Li W, Xia Y, Qin L, Tang X, Xia S. LRR Receptor-like Protein in Rapeseed Confers Resistance to Sclerotinia sclerotiorum Infection via a Conserved SsNEP2 Peptide. Int J Mol Sci 2025; 26:4569. [PMID: 40429714 PMCID: PMC12110989 DOI: 10.3390/ijms26104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Brassica napus is one of the most extensively cultivated oilseed crops in China, but its yield is significantly impacted by stem rot caused by Sclerotinia sclerotiorum. Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) play essential roles in plant-pathogen interactions; however, their regulatory mechanisms remain largely unknown in B. napus. In this study, we investigated the function of the leucine-rich repeat receptor-like protein BnaRLP-G13-1 in Brassica napus immunity. Previous observations indicated that B. napus plants expressing BnaRLP-G13-1 exhibited enhanced resistance to Sclerotinia sclerotiorum. We hypothesized that BnaRLP-G13-1 mediates pathogen recognition and immune signaling. To test this, we employed mitogen-activated protein kinase (MAPK) activity assays, transgenic overexpression analyses, and pathogen infection assays. Our results demonstrated that BnaRLP-G13-1 recognizes the conserved necrosis- and ethylene-inducing peptide Ssnlp24SsNEP2 derived from S. sclerotiorum, triggering MAPK cascades and subsequent immune responses. Furthermore, protein interaction studies revealed that BnaRLP-G13-1 physically interacts with the receptor-like kinase BnaSOBIR1, which is essential for full antifungal defense activation. These results elucidate the molecular basis of BnaRLP-G13-1-mediated immunity, providing insights into improving disease resistance in oilseed crops.
Collapse
Affiliation(s)
- Chenghuizi Yang
- Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya 572022, China;
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Weiping Zhong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (W.Z.); (W.L.); (Y.X.); (L.Q.); (X.T.)
| |
Collapse
|
2
|
Cao Y, Zhang C, Liu F, Li D, Zhang A, Li L, Zhang X. Genome-Wide Identification and Expression Analysis of Kiwifruit Leucine-Rich Repeat Receptor-Like Proteins Reveal Their Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2024; 25:4497. [PMID: 38674082 PMCID: PMC11050117 DOI: 10.3390/ijms25084497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and abiotic stresses remain poorly understood. In this study, we performed family identification, characterization, transcriptome data analysis, and differential gene expression analysis of kiwifruit LRR-RLPs. We identified totals of 101, 164, and 105 LRR-RLPs in Actinidia chinensis 'Hongyang', Actinidia eriantha 'Huate', and Actinidia chinensis 'Red5', respectively. Synteny analysis revealed that the expansion of kiwifruit LRR-RLPs was primarily attributed to segmental duplication events. Based on RNA-seq data from pathogen-infected kiwifruits, we identified specific LRR-RLP genes potentially involved in different stages of pathogen infection. Additionally, we observed the potential involvement of kiwifruit LRR-RLPs in abiotic stress responses, with upstream transcription factors possibly regulating their expression. Furthermore, protein interaction network analysis unveiled the participation of kiwifruit LRR-RLP in the regulatory network of abiotic stress responses. These findings highlight the crucial roles of LRR-RLPs in mediating both biotic and abiotic stress responses in kiwifruit, offering valuable insights for the breeding of stress-resistant kiwifruit varieties.
Collapse
Affiliation(s)
- Yingying Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congxiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.C.); (C.Z.); (F.L.); (D.L.); (A.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
3
|
Zhang X, Qin L, Lu J, Xia Y, Tang X, Lu X, Xia S. Genome-Wide Identification of GYF-Domain Encoding Genes in Three Brassica Species and Their Expression Responding to Sclerotinia sclerotiorum in Brassica napus. Genes (Basel) 2023; 14:224. [PMID: 36672966 PMCID: PMC9858701 DOI: 10.3390/genes14010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xun Lu
- Agricultural Science Academy of Xiangxi Tujia and Miao Autonomous Prefecture, Xiangxi 416000, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|