1
|
Maranho LT, Gomes MP. Morphophysiological Adaptations of Aquatic Macrophytes in Wetland-Based Sewage Treatment Systems: Strategies for Resilience and Efficiency under Environmental Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2870. [PMID: 39458817 PMCID: PMC11511398 DOI: 10.3390/plants13202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
There is a common misconception that aquatic macrophytes face significant challenges in wetland-based sewage treatment systems. This study aims to correct this perception by focusing on the crucial morphophysiological adaptations of aquatic macrophytes that enable them to thrive in wetland-based sewage treatment systems, particularly under environmental stress. These adaptations are vital for improving the efficiency and resilience of wastewater treatment processes, offering sustainable solutions in the face of variable environmental conditions and complex contaminant mixtures. The review emphasizes the role of macrophytes as natural engineers, capable of enhancing pollutant removal and system stability through their unique structural and functional traits. By understanding these adaptations, the review aims to guide the optimization of wetland design and management, ultimately contributing to more sustainable and effective wastewater treatment practices. The findings underscore the importance of species selection and the integration of nature-based solutions in environmental management, advocating for policies that support the use of macrophytes in modern wastewater management.
Collapse
Affiliation(s)
- Leila Teresinha Maranho
- Plant Stress Physiology Laboratory, Department of Botany, Biological Sciences Sector, Polytechnic Center Jardim das Américas, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100, Curitiba 81531-980, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Marcelo Pedrosa Gomes
- Plant Stress Physiology Laboratory, Department of Botany, Biological Sciences Sector, Polytechnic Center Jardim das Américas, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100, Curitiba 81531-980, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba 81531-980, Brazil
| |
Collapse
|
2
|
Szabó S, Zavanyi G, Koleszár G, Del Castillo D, Oláh V, Braun M. Phytoremediation, recovery and toxic effects of ionic gadolinium using the free-floating plant Lemna gibba. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131930. [PMID: 37390689 DOI: 10.1016/j.jhazmat.2023.131930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
The biosorption and recovery of ionic gadolinium (Gd) from contaminated water by the free-floating duckweed Lemna gibba was studied. The highest non-toxic concentration range was determined as (6.7 mg L-1). The concentration of Gd in the medium and in the plant biomass was monitored and a mass balance was established. Tissue Gd concentration of Lemna increased with increasing Gd concentration of the medium. The bioconcentration factor was up to 1134 and in nontoxic concentrations up to 2.5 g kg-1 Gd tissue concentration was reached. Lemna ash contained 23.2 g Gd kg-1. Gd removal efficiency from the medium was 95%, however, only 17-37% of the initial Gd content of the medium accumulated in Lemna biomass, an average of 5% remained in the water, and 60-79% was calculated as a precipitate. Gadolinium-exposed Lemna plants released ionic Gd into the nutrient solution when they were transferred to a Gd-free medium. The experimental results revealed that in constructed wetlands, L. gibba is able to remove ionic Gd from the water and can be suitable for bioremediation and recovery purposes.
Collapse
Affiliation(s)
- Sándor Szabó
- Department of Biology, Institute of Environmental Sciences, University of Nyíregyháza, P.O. Box 166, H-4401 Nyíregyháza, Hungary.
| | - Györgyi Zavanyi
- Department of Biology, Institute of Environmental Sciences, University of Nyíregyháza, P.O. Box 166, H-4401 Nyíregyháza, Hungary; Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Gergő Koleszár
- Department of Biology, Institute of Environmental Sciences, University of Nyíregyháza, P.O. Box 166, H-4401 Nyíregyháza, Hungary; Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Dahlia Del Castillo
- Department of Biology, Institute of Environmental Sciences, University of Nyíregyháza, P.O. Box 166, H-4401 Nyíregyháza, Hungary
| | - Viktor Oláh
- Department of Botany, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Mihály Braun
- Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Debrecen, Hungary
| |
Collapse
|
3
|
Ziegler P, Appenroth KJ, Sree KS. Survival Strategies of Duckweeds, the World's Smallest Angiosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112215. [PMID: 37299193 DOI: 10.3390/plants12112215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Klaus J Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, 07743 Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
4
|
Oláh V, Irfan M, Szabó ZB, Sajtos Z, Ragyák ÁZ, Döncző B, Jansen MAK, Szabó S, Mészáros I. Species- and Metal-Specific Responses of the Ionome of Three Duckweed Species under Chromate and Nickel Treatments. PLANTS (BASEL, SWITZERLAND) 2023; 12:180. [PMID: 36616308 PMCID: PMC9824728 DOI: 10.3390/plants12010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this study, growth and ionomic responses of three duckweed species were analyzed, namely Lemna minor, Landoltia punctata, and Spirodela polyrhiza, were exposed for short-term periods to hexavalent chromium or nickel under laboratory conditions. It was found that different duckweed species had distinct ionomic patterns that can change considerably due to metal treatments. The results also show that, because of the stress-induced increase in leaf mass-to-area ratio, the studied species showed different order of metal uptake efficiency if plant area was used as unit of reference instead of the traditional dry weight-based approach. Furthermore, this study revealed that μXRF is applicable in mapping elemental distributions in duckweed fronds. By using this method, we found that within-frond and within-colony compartmentation of metallic ions were strongly metal- and in part species-specific. Analysis of duckweed ionomics is a valuable approach in exploring factors that affect bioaccumulation of trace pollutants by these plants. Apart from remediating industrial effluents, this aspect will gain relevance in food and feed safety when duckweed biomass is produced for nutritional purposes.
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Muhammad Irfan
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Zsuzsanna Barnáné Szabó
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Zsófi Sajtos
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Ágota Zsófia Ragyák
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Boglárka Döncző
- Institute for Nuclear Research (ATOMKI), Bem tér 18/c, H-4026 Debrecen, Hungary
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, University College Cork, Distillery Fields, North Mall, T23N73K Cork, Ireland
| | - Sándor Szabó
- Department of Biology, University of Nyiregyhaza, H-4401 Nyiregyhaza, Hungary
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| |
Collapse
|