1
|
Lauterberg M, Tschiersch H, Zhao Y, Kuhlmann M, Mücke I, Papa R, Bitocchi E, Neumann K. Implementation of theoretical non-photochemical quenching (NPQ (T)) to investigate NPQ of chickpea under drought stress with High-throughput Phenotyping. Sci Rep 2024; 14:13970. [PMID: 38886488 PMCID: PMC11183218 DOI: 10.1038/s41598-024-63372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Non-photochemical quenching (NPQ) is a protective mechanism for dissipating excess energy generated during photosynthesis in the form of heat. The accelerated relaxation of the NPQ in fluctuating light can lead to an increase in the yield and dry matter productivity of crops. Since the measurement of NPQ is time-consuming and requires specific light conditions, theoretical NPQ (NPQ(T)) was introduced for rapid estimation, which could be suitable for High-throughput Phenotyping. We investigated the potential of NPQ(T) to be used for testing plant genetic resources of chickpea under drought stress with non-invasive High-throughput Phenotyping complemented with yield traits. Besides a high correlation between the hundred-seed-weight and the Estimated Biovolume, significant differences were observed between the two types of chickpea desi and kabuli for Estimated Biovolume and NPQ(T). Desi was able to maintain the Estimated Biovolume significantly better under drought stress. One reason could be the effective dissipation of excess excitation energy in photosystem II, which can be efficiently measured as NPQ(T). Screening of plant genetic resources for photosynthetic performance could take pre-breeding to a higher level and can be implemented in a variety of studies, such as here with drought stress or under fluctuating light in a High-throughput Phenotyping manner using NPQ(T).
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ingo Mücke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Roberto Papa
- Marche Polytechnic University (UNIVPM), Ancona, Italy
| | | | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| |
Collapse
|
2
|
Wei Y, Xu Y, Khan A, Jiang C, Li H, Wu Y, Zhang C, Wang M, Chen J, Zeng L, Zhang M. Analysis of Photosynthetic Characteristics and Screening High Light-Efficiency Germplasm in Sugarcane. PLANTS (BASEL, SWITZERLAND) 2024; 13:587. [PMID: 38475434 DOI: 10.3390/plants13050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
Sugarcane is a globally significant crop for sugar and energy production, and developing high light-efficiency sugarcane varieties is crucial for enhancing yield and quality. However, limited research is available on the screening of sugarcane germplasm with high photosynthetic efficiency, especially with different leaf positions. The present study, conducted in Guangxi, China, aimed to analyze the photosynthetic characteristics of 258 sugarcane varieties at different leaf positions over three consecutive years in field experiments. The results showed significant differences in photosynthetic characteristics among genotypes, years, and leaf positions. Heritability estimates for various photosynthetic parameters ranged from 0.76 to 0.88. Principal component analysis revealed that the first three principal components accounted for over 99% of the cumulative variance. The first component represented photosynthetic efficiency and light utilization, the second focused on electron transfer and reaction center status, and the third was associated with chlorophyll content. Cluster and discriminant analysis classified sugarcane genotypes into three categories: high photosynthetic efficiency (HPE) with 86 genotypes, medium photosynthetic efficiency (MPE) with 60 genotypes, and low photosynthetic efficiency (LPE) with 112 genotypes. Multi-year trials confirmed that HPE sugarcane genotypes had higher single-stem weight and sucrose content. This study provides valuable insights into the photosynthetic physiological characteristics of different sugarcane varieties, which can contribute to further research regarding high yields and sugar breeding.
Collapse
Affiliation(s)
- Yibin Wei
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yuzhi Xu
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Abdullah Khan
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Chunxiu Jiang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Huojian Li
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yuling Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Chi Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Maoyao Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Jun Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Lifang Zeng
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Lauterberg M, Tschiersch H, Papa R, Bitocchi E, Neumann K. Engaging Precision Phenotyping to Scrutinize Vegetative Drought Tolerance and Recovery in Chickpea Plant Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2023; 12:2866. [PMID: 37571019 PMCID: PMC10421427 DOI: 10.3390/plants12152866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Precise and high-throughput phenotyping (HTP) of vegetative drought tolerance in chickpea plant genetic resources (PGR) would enable improved screening for genotypes with low relative loss of biomass formation and reliable physiological performance. It could also provide a basis to further decipher the quantitative trait drought tolerance and recovery and gain a better understanding of the underlying mechanisms. In the context of climate change and novel nutritional trends, legumes and chickpea in particular are becoming increasingly important because of their high protein content and adaptation to low-input conditions. The PGR of legumes represent a valuable source of genetic diversity that can be used for breeding. However, the limited use of germplasm is partly due to a lack of available characterization data. The development of HTP systems offers a perspective for the analysis of dynamic plant traits such as abiotic stress tolerance and can support the identification of suitable genetic resources with a potential breeding value. Sixty chickpea accessions were evaluated on an HTP system under contrasting water regimes to precisely evaluate growth, physiological traits, and recovery under optimal conditions in comparison to drought stress at the vegetative stage. In addition to traits such as Estimated Biovolume (EB), Plant Height (PH), and several color-related traits over more than forty days, photosynthesis was examined by chlorophyll fluorescence measurements on relevant days prior to, during, and after drought stress. With high data quality, a wide phenotypic diversity for adaptation, tolerance, and recovery to drought was recorded in the chickpea PGR panel. In addition to a loss of EB between 72% and 82% after 21 days of drought, photosynthetic capacity decreased by 16-28%. Color-related traits can be used as indicators of different drought stress stages, as they show the progression of stress.
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (M.L.)
| |
Collapse
|