1
|
Wang C, Tai H, Chen Y, Zhai Z, Zhang L, Pu Z, Zhang M, Li C, Xie Z. Soil Microbiota Modulates Root Transcriptome With Divergent Effect on Maize Growth Under Low and High Phosphorus Inputs. PLANT, CELL & ENVIRONMENT 2025; 48:2132-2144. [PMID: 39552518 DOI: 10.1111/pce.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Plant growth can be promoted by beneficial microorganisms, or inhibited by detrimental ones. Although the interaction process between a single microbial species and its host has been extensively studied, the growth and transcriptional response of the host to soil microbiota is poorly understood. We planted maize in natural or sterile soil collected from a long-term experimental site with two different soil phosphate (P) regimes. We examined the composition of microbial communities inhabiting root-associated niches in natural soil. In parallel, we determined the biomass, ionomes, and root transcriptome profiling of maize grown in natural or sterile soil. Soil microbiota could promote or inhibit different P starvation-responsive (PSR) genes, as well as induce several defense-related metabolic processes independently of external P levels. Soil microbiota accompanied by long-term application of P fertilizer induced lower intensity of PSR and defense responses, inhibiting maize growth. Under a low P regime, the PSR and defense responses were induced to a higher extent, promoting P absorption and growth. Our findings suggest a soil P-dependent effect of microbiota on maize growth by integrating PSR and defense responses and provide a more refined understanding of the interaction between root growth and soil microbiota.
Collapse
Affiliation(s)
- Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Huanhuan Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Zhiwen Zhai
- Yazhouwan National Laboratory, Sanya, Hainan Province, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| | - Maolin Zhang
- Dongying City Yibang Agricultural Technology Development Co., Ltd., Dongying, Shandong Province, China
| | - Chunjian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Martín-Cardoso H, San Segundo B. Impact of Nutrient Stress on Plant Disease Resistance. Int J Mol Sci 2025; 26:1780. [PMID: 40004243 PMCID: PMC11855198 DOI: 10.3390/ijms26041780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Plants are constantly exposed to abiotic and biotic stresses that seriously affect crop yield and quality. A coordinated regulation of plant responses to combined abiotic/biotic stresses requires crosstalk between signaling pathways initiated by each stressor. Interconnected signaling pathways further finetune plant stress responses and allow the plant to respond to such stresses effectively. The plant nutritional status might influence disease resistance by strengthening or weakening plant immune responses, as well as through modulation of the pathogenicity program in the pathogen. Here, we discuss advances in our understanding of interactions between nutrient stress, deficiency or excess, and immune signaling pathways in the context of current agricultural practices. The introduction of chemical fertilizers and pesticides was a major component of the Green Revolution initiated in the 1960s that greatly boosted crop production. However, the massive application of agrochemicals also has adverse consequences on the environment and animal/human health. Therefore, an in-depth understanding of the connections between stress caused by overfertilization (or low bioavailability of nutrients) and immune responses is a timely and novel field of research with important implications for disease control in crop species. Optimizing nutrient management practices tailored to specific environmental conditions will be crucial in maximizing crop production using environmentally friendly systems.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
3
|
Tomkowiak A. Identification of SNP and SilicoDArT Markers and Characterization of Their Linked Candidate Genes Associated with Maize Smut Resistance. Int J Mol Sci 2024; 25:11358. [PMID: 39518909 PMCID: PMC11547173 DOI: 10.3390/ijms252111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The implementation of biological advancements in agricultural production is the response to the needs of the agricultural sector in the 21st century, enabling increased production and improved food quality. Biological progress in the maize breeding and seed industries is unique in terms of their social and ecological innovation aspects. It affects agricultural productivity and the adaptation of cultivated maize varieties to market demands and changing climate conditions without compromising the environment. Modern maize resistance breeding relies on a wide range of molecular genetic research techniques. These technologies enable the identification of genomic regions associated with maize smut resistance, which is crucial for characterizing and manipulating these regions. Therefore, the aim of this study was to identify molecular markers (SilicoDArT and SNP) linked to candidate genes responsible for maize smut resistance, utilizing next-generation sequencing, as well as association and physical mapping. By using next-generation sequencing (NGS) and statistical tools, the analyzed maize genotypes were divided into heterotic groups, which enabled the prediction of the hybrid formula in heterosis crosses. In addition, Illumina sequencing identified 60,436 SilicoDArT markers and 32,178 SNP markers (92,614 in total). For association mapping, 32,900 markers (26,234 SilicoDArT and 6666 SNP) meeting the criteria (MAF > 0.25 and the number of missing observations < 10%) were used. Among the selected markers, 61 were highly statistically significant (LOD > 2.3). Among the selected 61 highly statistically significant markers (LOD > 2.3), 10 were significantly associated with plant resistance to maize smut in two locations (Smolice and Kobierzyce). Of the 10 selected markers, 3 SilicoDArT (24016548, 2504588, 4578578) and 3 SNP (4779579, 2467511, 4584208) markers were located within genes. According to literature reports, of these six genes, three (ATAD3, EDM2, and CYP97A3) are characterized proteins that may play a role in the immune response that develops in response to corn smut infection. In the case of genotypes belonging to the same origin groups, markers linked to these genes can be used to select varieties resistant to corn smut. These markers will also be tested on genotypes belonging to other maize origin groups to demonstrate their universality.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-631 Poznań, Poland
| |
Collapse
|
4
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
5
|
Mondal S, Acharya U, Mukherjee T, Bhattacharya D, Ghosh A, Ghosh A. Exploring the dynamics of ISR signaling in maize upon seed priming with plant growth promoting actinobacteria isolated from tea rhizosphere of Darjeeling. Arch Microbiol 2024; 206:282. [PMID: 38806859 DOI: 10.1007/s00203-024-04016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.
Collapse
Affiliation(s)
- Sangita Mondal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Udita Acharya
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Triparna Mukherjee
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
- Department of Biotechnology, School of Biotechnology and Bioscience, Brainware University, Kolkata, India
| | - Dhruba Bhattacharya
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Anupama Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India.
| |
Collapse
|
6
|
Chen L, Hu Y, Huang L, Chen L, Duan X, Wang G, Ou H. Comparative transcriptome revealed the molecular responses of Aconitum carmichaelii Debx. to downy mildew at different stages of disease development. BMC PLANT BIOLOGY 2024; 24:332. [PMID: 38664645 PMCID: PMC11044490 DOI: 10.1186/s12870-024-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.
Collapse
Affiliation(s)
- Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianglei Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
7
|
Zhou S, Lin Y, Cai Y, Li L, Yao X, Sun K, Song Q, Zhang Q. The response of rhubarb to smut infection is revealed through a comparative transcriptome and metabolome study. PLANTA 2023; 259:27. [PMID: 38112830 DOI: 10.1007/s00425-023-04306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
MAIN CONCLUSION Integrated transcriptome and metabolome analysis have unveiled the physiological and molecular responses of rhubarb to infection by smut fungi. Rhubarb is an important medicinal plant that is easily infected by smut fungi during its growth. Thus far, no research on the influence of smut fungi on the growth of rhubarb and its secondary metabolism has been conducted. In this study, petioles of Chinese rhubarb (Rheum officinale) [healthy or infected with smut fungus (Thecaphora schwarzmaniana)] were characterized. Microscopic structure, global gene expression profiling, global metabolic profiling, and key enzyme activity and metabolite levels in infected plants were analyzed. Infection by smut fungi resulted in numerous holes inside the petiole tissue and led to visible tumors on the external surface of the petiole. Through metabolic changes, T. schwarzmaniana induced the production of specific sugars, lipids, and amino acids, and inhibited the metabolism of phenolics and flavonoids in R. officinale. The concentrations of key medicinal compounds (anthraquinones) were decreased because of smut fungus infection. In terms of gene expression, the presence of T. schwarzmaniana led to upregulation of the genes associated with nutrient (sugar, amino acid, etc.) transport and metabolism. The gene expression profiling showed a stimulated cell division activity (the basis of tumor formation). Although plant antioxidative response was enhanced, the plant defense response against pathogen was suppressed by T. schwarzmaniana, as indicated by the expression profiling of genes involved in biotic and abiotic stress-related hormone signaling and the synthesis of plant disease resistance proteins. This study demonstrated physiological and molecular changes in R. officinale under T. schwarzmaniana infection, reflecting the survival tactics employed by smut fungus for parasitizing rhubarb.
Collapse
Affiliation(s)
- Shuangshuang Zhou
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Ya Lin
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Yu Cai
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China
| | - Linfang Li
- Teaching and research group of biology, Kunming No.8 High School, Kunming, China
| | - Xiaohui Yao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Teaching and research group of biology, Hohhot 35th Middle School, Hohhot, China
| | - Kuan Sun
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingwei Zhang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Nanchuan Institute of Traditional Chinese Medicinal Plants, Chongqing, 408407, China.
| |
Collapse
|
8
|
Wang Y, Li W, Qu J, Li F, Du W, Weng J. Genome-Wide Characterization of the Maize ( Zea mays L.) WRKY Transcription Factor Family and Their Responses to Ustilago maydis. Int J Mol Sci 2023; 24:14916. [PMID: 37834371 PMCID: PMC10573107 DOI: 10.3390/ijms241914916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.
Collapse
Affiliation(s)
- Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wangshu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Fenghai Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| |
Collapse
|
9
|
Huang Y, Li Y, Zou K, Wang Y, Ma Y, Meng D, Luo H, Qu J, Li F, Xuan Y, Du W. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall. Int J Mol Sci 2023; 24:14737. [PMID: 37834187 PMCID: PMC10573042 DOI: 10.3390/ijms241914737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.
Collapse
Affiliation(s)
- Yingni Huang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Kunkun Zou
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Yu C, Qi J, Han H, Wang P, Liu C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. MOLECULAR PLANT PATHOLOGY 2023; 24:495-509. [PMID: 36808861 PMCID: PMC10098057 DOI: 10.1111/mpp.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.
Collapse
Affiliation(s)
- Chunyan Yu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & PharmacyNorthwest A&F UniversityYanglingChina
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
11
|
Transcriptome Comparison between Two Strains of Ustilago esculenta during the Mating. J Fungi (Basel) 2022; 9:jof9010032. [PMID: 36675853 PMCID: PMC9862937 DOI: 10.3390/jof9010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.
Collapse
|