1
|
Zhou F, Zhao YN, Perkins J, Xu H, Pichersky E, Peakall R, Wong DCJ. Fine-tuned terpene synthase gene expression, functional promiscuity, and subcellular localization: implications for the evolution of complex floral volatile bouquet in Caladenia orchids. PLANT & CELL PHYSIOLOGY 2025; 66:627-644. [PMID: 40056156 PMCID: PMC12085088 DOI: 10.1093/pcp/pcaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/10/2025]
Abstract
Chemically mediated floral volatile signals are crucial for pollinator attraction across angiosperms. However, beyond model plant systems, the molecular mechanisms underpinning their tissue-specific biosynthesis, regulation, and emission are still poorly understood. In this study of a food-deceptive insect-pollinated orchid (Caladenia denticulata), we elucidated the molecular basis of α-pinene biosynthesis-the major floral volatile emitted by this species and diverse lower abundance monoterpenes and sesquiterpenes. To achieve this, we combined comparative transcriptomics between active glandular trichome-rich sepal tips and labellum and non-active remaining flower tissues, floral volatile headspace profiling, phylogenetic analysis of a multigene family, and protein functional assays. We found (i) multiple branch points of the terpene synthase (TPS) biosynthetic pathway were highly expressed and coordinately upregulated in the active floral tissues compared to non-active ones, (ii) the monoterpene synthase CdTPS-b3 underpinning α-pinene biosynthesis and a bona fide promiscuous TPS CdTPS-b4 that may contribute to the diverse array of low-abundance mono- and sesquiterpenes found in its flowers, and (iii) dual localization (plastid and cytosol) of CdTPS-b3 and CdTPS-b4. Our findings highlight metabolic pathway specialization at multiple TPS pathway branch points supporting the biosynthesis and emission of α-pinene in C. denticulata flowers that are implicated in its generalist pollinator attraction. Furthermore, the complexity of diverse floral terpenes in Caladenia is likely mediated by finely tuned TPS gene expression, functional promiscuity, and subcellular localization. We predict that the combination of these three mechanisms underpin the evolution of multiple deceptive pollination strategies in Caladenia.
Collapse
Affiliation(s)
- Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Haiyang Xu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- School of Agriculture, Food, and Wine, Waite Research Precinct, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
2
|
Narbona E, Del Valle JC, Whittall JB, León-Osper M, Buide ML, Pulgar I, Camargo MGG, Morellato LPC, Rodríguez-Castañeda N, Rossi V, Conrad K, Hernandez-Mena J, Ortiz PL, Arista M. Transcontinental patterns in floral pigment abundance among animal-pollinated species. Sci Rep 2025; 15:15927. [PMID: 40335586 PMCID: PMC12059069 DOI: 10.1038/s41598-025-94709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025] Open
Abstract
Flower color arises primarily from pigments that serve dual functions: attracting pollinators and mitigating environmental stresses. Among major pigment types, anthocyanins and UV-absorbing phenylpropanoids (UAPs) fulfill one or both roles and should be widespread. Our review of the UV-vis absorption profiles of major floral pigments demonstrates that UAPs are the primary UV protectants. Next, we analyzed the floral pigment composition of 926 animal-pollinated species from California, Southern Spain, and Southeastern Brazil. UAPs were ubiquitous (the "dark matter" of the flower). Among the remaining pigment types, ~ 56% of species had anthocyanins, ~ 37% had carotenoids, and ~ 17% had chlorophylls (some species had > 1 pigment type). Pigment abundance varied in response to abiotic and biotic factors, particularly with pollinator type in California. Despite regional differences in environmental filtering, pollination guilds, and relatedness, UAPs are omnipresent and there is a transcontinental stable distribution of flower colors and their underlying floral pigments.
Collapse
Affiliation(s)
- Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Jose C Del Valle
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Melissa León-Osper
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - M Luisa Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Iñigo Pulgar
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Maria Gabriela Gutierrez Camargo
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, Rio Claro, São Paulo, Brazil
| | - Leonor Patricia Cerdeira Morellato
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, Rio Claro, São Paulo, Brazil
| | - Nancy Rodríguez-Castañeda
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Victor Rossi
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | - Katie Conrad
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | | | - Pedro L Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Veltman MA, Anthoons B, Schrøder-Nielsen A, Gravendeel B, de Boer HJ. Orchidinae-205: A new genome-wide custom bait set for studying the evolution, systematics, and trade of terrestrial orchids. Mol Ecol Resour 2024; 24:e13986. [PMID: 38899721 DOI: 10.1111/1755-0998.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Terrestrial orchids are a group of genetically understudied, yet culturally and economically important plants. The Orchidinae tribe contains many species that produce edible tubers that are used for the production of traditional delicacies collectively called 'salep'. Overexploitation of wild orchids in the Eastern Mediterranean and Western Asia threatens to drive many of these species to extinction, but cost-effective tools for monitoring their trade are currently lacking. Here we present a custom bait kit for target enrichment and sequencing of 205 novel genetic markers that are tailored to phylogenomic applications in Orchidinae s.l. A subset of 31 markers capture genes putatively involved in the production of glucomannan, a water-soluble polysaccharide that gives salep its distinctive properties. We tested the kit on 73 taxa native to the area, demonstrating universally high locus recovery irrespective of species identity, that exceeds the total sequence length obtained with alternative kits currently available. Phylogenetic inference with concatenation and coalescent approaches was robust and showed high levels of support for most clades, including some which were previously unresolved. Resolution for hybridizing and recently radiated lineages remains difficult, but could be further improved by analysing multiple haplotypes and the non-exonic sequences captured by our kit, with the promise to shed new light on the evolution of enigmatic taxa with a complex speciation history. Offering a step-up from traditional barcoding and universal markers, the genome-wide custom loci targeted by Orchidinae-205 are a valuable new resource to study the evolution, systematics and trade of terrestrial orchids.
Collapse
Affiliation(s)
- Margaretha A Veltman
- Natural History Museum, Oslo, Norway
- Naturalis Biodiversity Center, Leiden, Netherlands
| | | | | | - Barbara Gravendeel
- Naturalis Biodiversity Center, Leiden, Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
4
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Wong DCJ, Pichersky E, Peakall R. Many different flowers make a bouquet: Lessons from specialized metabolite diversity in plant-pollinator interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102332. [PMID: 36652780 DOI: 10.1016/j.pbi.2022.102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Flowering plants have evolved extraordinarily diverse metabolites that underpin the floral visual and olfactory signals enabling plant-pollinator interactions. In some cases, these metabolites also provide unusual rewards that specific pollinators depend on. While some metabolites are shared by most flowering plants, many have evolved in restricted lineages in response to the specific selection pressures encountered within different niches. The latter are designated as specialized metabolites. Recent investigations continue to uncover a growing repertoire of unusual specialized metabolites. Increased accessibility to cutting-edge multi-omics technologies (e.g. genome, transcriptome, proteome, metabolome) is now opening new doors to simultaneously uncover the molecular basis of their synthesis and their evolution across diverse plant lineages. Drawing upon the recent literature, this perspective discusses these aspects and, where known, their ecological and evolutionary relevance. A primer on omics-guided approaches to discover the genetic and biochemical basis of functional specialized metabolites is also provided.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|