1
|
Niu J, Xu M, Zhang X, Li L, Luo W, Ma M, Zhu L, Tian D, Zhang S, Xie B, Wang G, Wang L, Hui W. 6-Methyl-5-hepten-2-one promotes programmed cell death during superficial scald development in pear. MOLECULAR HORTICULTURE 2024; 4:32. [PMID: 39187899 PMCID: PMC11348602 DOI: 10.1186/s43897-024-00107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Plants possess the ability to induce programmed cell death (PCD) in response to abiotic and biotic stresses; nevertheless, the evidence on PCD initiation during pear scald development and the involvement of the scald trigger 6-methyl-5-hepten-2-one (MHO) in this process is rudimentary. Pyrus bretschneideri Rehd. cv. 'Dangshansuli' pear was used to validate such hypothesis. The results showed that superficial scald occurred after 120-d chilling exposure, which accompanied by typical PCD-associated morphological alterations, such as plasmolysis, cell shrinkage, cytosolic and nuclear condensation, vacuolar collapse, tonoplast disruption, subcellular organelle swelling, and DNA fragmentation. These symptoms were aggravated after MHO fumigation but alleviated by diphenylamine (DPA) dipping. Through transcriptome assay, 24 out of 146 PCD-related genes, which were transcribed during cold storage, were identified as the key candidate members responsible for these cellular biological alternations upon scald development. Among these, PbrCNGC1, PbrGnai1, PbrACD6, and PbrSOBIR1 were implicated in the MHO signaling pathway. Additionally, PbrWRKY2, 34 and 39 could bind to the W-box element in the promoter of PbrGnai1 or PbrSOBIR1 and activate their transcription, as confirmed by dual-luciferase, yeast one-hybrid, and transient overexpression assays. Hence, our study confirms the PCD initiation during scald development and explores the critical role of MHO in this process.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Mingzhen Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Luqi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Weiqi Luo
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC, 27606, USA
| | - Meng Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Decai Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Xi'an, 710119, China.
| | - Libin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Xi'an, 710119, China.
| |
Collapse
|
2
|
Zhang X, Zhu L, Qian M, Jiang L, Gu P, Jia L, Qian C, Luo W, Ma M, Wu Z, Qiao X, Wang L, Zhang S. PbrWRKY62-PbrADC1 module involves in superficial scald development of Pyrus bretschneideri Rehd.fruit via regulating putrescine biosynthesis. MOLECULAR HORTICULTURE 2024; 4:6. [PMID: 38373989 PMCID: PMC10877817 DOI: 10.1186/s43897-024-00081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
Putrescine plays a role in superficial scald development during the cold storage of pear fruit. However, the molecular mechanism behind this phenomenon has not been un-fully clarified until recently. In this study, a conjoint analysis of metabolites and gene expression profiles in the putrescine-metabolic pathway of P. bretschneideri Rehd. fruit followed by experimental validation revealed that PbrADC1, forming a homodimer in the chloroplast, was involved in putrescine biosynthesis and thus fruit chilling resistance. Additionally, the substrate-binding residue Cys546 in PbrADC1, whose activity was modified by H2O2, played a crucial role in arginine decarboxylation into agmatine. Through a combined analysis of the distribution of cis-acting elements in the PbrADC1 promoter as well as the expression profiles of related transcription factors (TFs), several TFs were identified as upstream regulators of PbrADC1 gene. Further investigation revealed that the nuclear PbrWRKY62 could directly bind to the W-box elements in the PbrADC1 promoter, activate its expression, enhance putrescine accumulation, and thus increase fruit chilling tolerance. In conclusion, our results suggest that the PbrWRKY62-PbrADC1 module is involved in the development of superficial scald in P. bretschneideri Rehd. fruit via regulating putrescine biosynthesis. Consequently, these findings could serve as valuable genetic resources for breeding scald-resistant pear fruit.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lijuan Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ming Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Li Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Peng Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luting Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weiqi Luo
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC, 27606, USA
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Libin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|