1
|
Li K, Han Y, Chen M, Yu G, Abulaizi M, Hu Y, Wang B, Yang Z, Zhu X, Jia H. Impact of Different Land-Use Types on Soil Microbial Carbon Metabolism Function in Arid Region of Alpine Grassland. PLANTS (BASEL, SWITZERLAND) 2024; 13:3531. [PMID: 39771229 PMCID: PMC11678600 DOI: 10.3390/plants13243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method. The results showed that the soil organic carbon content decreased by 16.02% in the RG and by 32.1% in the AG compared to the GG in the 0-20 cm soil layer (p < 0.05). Additionally, microorganisms have the highest utilization efficiency of carbohydrate carbon sources, the average values of average well color development (AWCD) were RG (0.26), AG (0.35), and GG (0.26). In the 0-20 cm soil layer, the Shannon-Wiener and the Simpson indices were 3% and 1% higher in the AG compared to the GG, respectively. The soil TOC/TN and soil available phosphorus (AP) were key factors that affected the diversity of soil microbial and carbon metabolism. They were closely related to land-use types. This study holds that abandoning grasslands accelerates the carbon metabolism of microorganisms, leading to the loss of SOC content.
Collapse
Affiliation(s)
- Keyi Li
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China; (K.L.); (Y.H.)
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.C.); (M.A.)
| | - Yaoguang Han
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China; (K.L.); (Y.H.)
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.C.); (M.A.)
| | - Mo Chen
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.C.); (M.A.)
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (B.W.); (Z.Y.); (H.J.)
| | - Guangling Yu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Maidinuer Abulaizi
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.C.); (M.A.)
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (B.W.); (Z.Y.); (H.J.)
- College of Natural Resources and Environment, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Bohao Wang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (B.W.); (Z.Y.); (H.J.)
| | - Zailei Yang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (B.W.); (Z.Y.); (H.J.)
| | - Xinping Zhu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China; (K.L.); (Y.H.)
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 102206, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (B.W.); (Z.Y.); (H.J.)
| |
Collapse
|
2
|
Zhang J, Liu M, Landry NBJ, Duan Y, Li X, Zhou X. The impact of Ricinus straw on tomato growth and soil microbial community. Front Microbiol 2024; 15:1499302. [PMID: 39687867 PMCID: PMC11646993 DOI: 10.3389/fmicb.2024.1499302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Returning straw can alter the soil microbial community, reduce the occurrence of soilborne diseases, and promote plant growth. In this study, we aimed to evaluate the effects of Ricinus straw on tomato growth and rhizosphere microbial community. We carried out microcosm experiments to investigate the effects of Ricinus straw with different dosages (0, 1, and 3%) on tomato dry biomass and rhizosphere bacterial and fungal communities. The results indicated that the dry biomass of tomato seedlings with 1% addition of Ricinus straw increased by 53.98%. In addition, Ricinus straw also changed the abundance, diversities, and composition of tomato rhizosphere microbial communities. In detail, the addition of 1% Ricinus straw increased the relative abundance of putative beneficial bacteria and fungi in straw decomposition, such as Ramlibacter sp., Azohydromonas sp., Schizothecium sp., and Acaulium sp., and decreased the relative abundance of Fusarium sp. Meanwhile, Ricinus straw inhibited the growth of putative pathogenic microorganisms. The correlation analysis showed that the changes in fungal community operational taxonomic units stimulated by the addition of Ricinus straw may play a crucial positive regulatory role in tomato growth. Finally, the representative fungal strain Fusarium oxysporum f. sp. Lycopersici (FOL), named TF25, was isolated and cultured. We found that Ricinus straw extract inhibited the growth of TF25 in an in vitro experiment with an inhibition rate of 34.95-51.91%. Collectively, Ricinus straw promoted plant growth by changing the rhizosphere microbial community composition and inhibiting FOL growth, which provides new evidence for understanding the improvement of key microorganism composition in improving crop growth and the sustainability of agriculture.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Minghao Liu
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - N’da Brou Jean Landry
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yaping Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Song Y, Song T, An Y, Shan L, Su X, Yu S. Soil ecoenzyme activities coupled with soil properties and plant biomass strongly influence the variation in soil organic carbon components in semi-arid degraded wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171361. [PMID: 38428614 DOI: 10.1016/j.scitotenv.2024.171361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Wetland degradation can induce alterations in plant biomass, soil properties, and soil ecoenzyme activities, consequently influencing soil organic carbon components. Despite extensive investigations into the relationships among plant characteristics, soil properties, and soil organic carbon components, the enzymatic mechanisms underlying changes in soil organic carbon components, particularly the impact and contribution of ecoenzyme activities, remain poorly understood. This study compared the soil organic carbon components at a depth of 0-20 cm in wetlands in the semi-arid western Songnen Plain under different degradation levels and explored plant biomass, soil properties, and soil ecoenzyme activities. The results showed that the soil total organic carbon, labile organic carbon, and recalcitrant organic carbon contents in the degraded wetlands were generally lower than those in the non-degraded wetlands. Furthermore, the soil nutrient contents and soil β-1,4-glucosidase, L-leucine aminopeptidase, and acid phosphatase activities were also lower in the degraded wetlands than in the non-degraded wetlands. Vector analysis of enzymatic stoichiometry revealed that wetland degradation did not increase microbial carbon limitation. The soil organic carbon components showed significant positive correlations with plant biomass, soil water content, soil total nitrogen, soil total phosphorus, as well as soil ecoenzyme activities. Variation partitioning analysis revealed that plant biomass, soil properties, soil ecoenzyme activities collectively accounted for 78.5 % variation in soil organic carbon components, among which plant biomass, soil properties, soil ecoenzyme activities, and their interactions explaining 4.2 %, 8.0 %, 7.9 %, and 24.5 % of the variation, respectively. Therefore, the impact of soil ecoenzyme activities and soil properties on soil organic carbon component changes was greater than that of plant biomass, with the interaction of these three factors playing a crucial role in soil organic carbon formation. This study provides a theoretical basis for scientifically evaluating the carbon sink function of degraded wetland soil and preserving the wetland soil carbon pool.
Collapse
Affiliation(s)
- Yazhi Song
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Tiejun Song
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China.
| | - Yu An
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Liping Shan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Shuiduo Yu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|