1
|
Lu G, Tian Z, Chen P, Liang Z, Zeng X, Zhao Y, Li C, Yan T, Hang Q, Jiang L. Comprehensive Morphological and Molecular Insights into Drought Tolerance Variation at Germination Stage in Brassica napus Accessions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3296. [PMID: 39683089 DOI: 10.3390/plants13233296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Drought constitutes a noteworthy abiotic stressor, detrimentally impacting seed germination, plant development, and agricultural yield. In response to the threats imposed by climate change and water paucity, this study examined the morphological divergence and genetic governance of drought resilience traits at the germination stage in 196 rapeseed (Brassica napus L.) lines under both normal (0 MPa) and drought-induced stress (-0.8 MPa) scenarios. Our study showed that the composite drought tolerance D value is a reliable index for identifying drought resilience. Through a genome-wide association study (GWAS), we uncovered 37 significant SNP loci and 136 putative genes linked to drought tolerance based on the D value. A key discovery included the gene BnaA01g29390D (BnNCED3), encoding 9-cis-epoxycarotenoid dioxygenase, which exhibited significantly heightened expression levels in drought-resistant accessions (p < 0.01), underscoring its potential as a positive drought stress regulator and a suitable candidate for genetically enhancing drought resilience. Moreover, we pinpointed four stress-reactive transcription factors (BnaA07g26740D, BnaA07g26870D, BnaA07g26910D, and BnaA07g26980D), two E3 ubiquitin-protein ligases (BnaA05g22900D and BnaC06g28950D), two enzymes (BnaA01g29390D and BnaA03g48550D), and two photosystem-associated proteins (BnaA05g22950D and BnaC06g28840D) as vital components in drought response mechanisms. The construction of a regulatory network reveals an ABA-dependent pathway (NCED3/RGLG5/IDD14) that contributes to drought tolerance in rapeseed seedlings, alongside the involvement of a drought avoidance strategy (APRR6/PHYB). The SNPs and genes unveiled in this study offer a substantial theoretical foundation for subsequent investigations targeting genetic improvement for drought resilience during seed germination in rapeseed.
Collapse
Affiliation(s)
- Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhitao Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peiyuan Chen
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhiling Liang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xinyu Zeng
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yongguo Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Chunsheng Li
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Tao Yan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Qian Hang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Falconieri GS, Bertini L, Fiaschetti M, Bizzarri E, Baccelli I, Caruso C, Proietti S. Arabidopsis GLYI4 Reveals Intriguing Insights into the JA Signaling Pathway and Plant Defense. Int J Mol Sci 2024; 25:12162. [PMID: 39596230 PMCID: PMC11594653 DOI: 10.3390/ijms252212162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a central role in various physiological functions and mediate defense responses against (a)biotic stresses. Jasmonic acid (JA) has emerged as one of the key phytohormones involved in the response to necrotrophic pathogens. Under stressful conditions, plants can also produce small molecules, such as methylglyoxal (MG), a cytotoxic aldehyde. The enzymes glyoxalase I (GLYI) and glyoxalase II primarily detoxify MG. In Arabidopsis thaliana, GLYI4 has been recently characterized as having a crucial role in MG detoxification and emerging involvement in the JA pathway. Here, we investigated the impact of a GLYI4 loss-of-function on the Arabidopsis JA pathway and how MG affects it. The results showed that the glyI4 mutant plant had stunted growth, a smaller rosette diameter, reduced leaf size, and an altered pigment concentration. A gene expression analysis of the JA marker genes showed significant changes in the JA biosynthetic and signaling pathway genes in the glyI4 mutant. Disease resistance bioassays against the necrotroph Botrytis cinerea revealed altered patterns in the glyI4 mutant, likely due to increased oxidative stress. The MG effect has a further negative impact on plant performance. Collectively, these results contribute to clarifying the intricate interconnections between the GLYI4, MG, and JA pathways, opening up new avenues for further explorations of the intricate molecular mechanisms controlling plant stress responses.
Collapse
Affiliation(s)
- Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Matteo Fiaschetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| |
Collapse
|
3
|
Hui W, Wu H, Zheng H, Wang K, Yang T, Fan J, Wu J, Wang J, Al Mutairi AA, Yang H, Yang C, Cui B, Loake GJ, Gong W. Genome-wide characterization of RR gene family members in Zanthoxylum armatum and the subsequent functional characterization of the C-type RR. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108943. [PMID: 39032447 DOI: 10.1016/j.plaphy.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Response Regulators (RRs) are crucial regulators in plant development and stress responses, comprising A-type, B-type, C-type, and pseudo-RR subfamilies. However, previous studies have often focused on specific subfamilies, which restricts our understanding of the complete RR gene family. In this study, we conducted a comprehensive analysis of 63 RR members from Zanthoxylum armatum, using phylogenetic relationships, motif composition, cis-acting elements, gene duplication and collinearity analyses. Segmental repeats among ZaRR genes enhanced the various environmental adaptabilities of Z. armatum, and the B-type ZaRR exhibited significant collinearity with the RRs in P. trichocarpa and C. sinensis. Cis-element analysis indicated ZaRRs play a significant role in abiotic stress and phytohormone pathways, particularly in light, drought, cold, abscisic acid (ABA) and salicylic acid (SA) responses. Abundant Ethylene Response Factor (ERF) and reproduction-associated binding sites in ZaRR promoters suggested their roles in stress and reproductive processes. A-type ZaRRs were implicated in plant vegetative and reproductive growth, whereas B-type ZaRRs contributed to both growth and stress responses. C-type ZaRRs were associated with plant reproductive growth, whereas pseudo-RRs may function in plant stress responses, such as water logging, cold, and response to ethylene (ETH), SA, and jasmonic acid (JA). Ectopic expression of ZaRR24, a C-type RR, inhibits growth, induces early flowering, and shortens fruit length in Arabidopsis. ZaRR24 overexpression also affected the expression of A- and B-type RRs, as well as floral meristem and organ identity genes. These findings establish a solid and comprehensive foundation for RR gene research in Z. armatum, and provide a platform for investigating signal transduction in other woody plants.
Collapse
Affiliation(s)
- Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiangtao Fan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ahmed A Al Mutairi
- Biology Department, College of Science, Jouf University, Sakaka, 41412, Saudi Arabia
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunlin Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Zhang Y, Mo Y, Han L, Sun Z, Xu W. Exploring Transcriptional Regulation of Hyperaccumulation in Sedum plumbizincicola through Integrated Transcriptome Analysis and CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11845. [PMID: 37511604 PMCID: PMC10380820 DOI: 10.3390/ijms241411845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The cadmium hyperaccumulator Sedum plumbizincicola has remarkable abilities for cadmium (Cd) transport, accumulation and detoxification, but the transcriptional regulation mechanisms responsible for its Cd hyperaccumulation remain unknown. To address this knowledge gap, we conducted a comparative transcriptome study between S. plumbizincicola and the non-hyperaccumulating ecotype (NHE) of Sedum alfredii with or without Cd treatment. Our results revealed many differentially expressed genes involved in heavy metal transport and detoxification that were abundantly expressed in S. plumbizincicola. Additionally, we identified a large number of differentially expressed transcription factor genes, highlighting the complexity of transcriptional regulatory networks. We further screened four transcription factor genes that were highly expressed in the roots of S. plumbizincicola as candidate genes for creating CRISPR/Cas9 knockout mutations. Among these, the SpARR11 and SpMYB84 mutant lines exhibited decreased Cd accumulation in their aboveground parts, suggesting that these two transcription factors may play a role in the regulation of the Cd hyperaccumulation in S. plumbizincicola. Although further research will be required to determine the precise targeted genes of these transcription factors, combined transcriptome analysis and CRISPR/Cas9 technology provides unprecedented opportunities for identifying transcription factors related to Cd hyperaccumulation and contributes to the understanding of the transcriptional regulation mechanism of hyperaccumulation in S. plumbizincicola.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
6
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|