1
|
Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 2024; 51:508. [PMID: 38622474 DOI: 10.1007/s11033-024-09455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Collapse
Affiliation(s)
- Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, Rajasthan, 305206, India
| | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
2
|
Zhao C, Zhou J, Li C, You J, Liu Y, Tang H, Deng M, Xu Q, Zhang Y, Jiang Q, Chen G, Qi P, Jiang Y, Wang J, Li W, Pu Z, Chen G, Jiang Y, Zheng Z, Liu C, Zheng Y, Wei Y, Ma J. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:213. [PMID: 37740730 DOI: 10.1007/s00122-023-04459-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
KEY MESSAGE A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.
Collapse
Affiliation(s)
- Conghao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianing You
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yanling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy ofAgricultural Sciences, Chengdu, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, Saint Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, Saint Lucia, QLD, 4067, Australia
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
3
|
Wang S, Wang T, Xuan Q, Qu X, Xu Q, Jiang Q, Pu Z, Li Y, Jiang Y, Chen G, Deng M, Liu Y, Tang H, Chen G, He Y, Gou L, Wei Y, Zheng Y, Ma J. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:90. [PMID: 37000252 DOI: 10.1007/s00122-023-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.
Collapse
Affiliation(s)
- Surong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyu Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qijing Xuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, 621000, China
| | - Lulu Gou
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|