1
|
Bulog A, Pavelic K, Šutić I, Kraljevic Pavelic S. PMA-Zeolite: Chemistry and Diverse Medical Applications. J Funct Biomater 2024; 15:296. [PMID: 39452594 PMCID: PMC11509060 DOI: 10.3390/jfb15100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous scientific studies have been conducted in recent decades with the aim to study targeted application of zeolites in various industries, ecology, agronomy and medicine. The biggest advances, however, have been documented in medical and veterinary research of the natural zeolite, clinoptilolite. Although the exact biological mechanisms of action of the zeolite clinoptilolite are not completely elucidated, obtained results point to its antioxidative, immunomodulatory and detoxifying effects, the latter partially based on release of soluble and bioavailable silica forms from the surface material. The studied zeolite clinoptilolite materials have different geographical origins which confer to the physicochemical differences in the material. In addition, the production process of the material for oral applications differs between different producers which also accounts for different properties of the surface upon mechanical activation. Recently, a well-characterized zeolite clinoptilolite material, namely the PMA-zeolite, has been tested in different clinical applications and has shown potential as supportive therapy in inflammatory conditions, osteoporosis as well as during tumor chemotherapy. We accordingly present a comprehensive review of the PMA-zeolite effects in the clinical applications and discuss its probable mechanisms of effect in vivo.
Collapse
Affiliation(s)
- Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova ulica 52, 51000 Rijeka, Croatia; (A.B.); (I.Š.)
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Kresimir Pavelic
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- International Academy of Sciences and Arts in Bosnia and Herzegovina (IANUBIH), Radnička Cesta 34, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ivana Šutić
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova ulica 52, 51000 Rijeka, Croatia; (A.B.); (I.Š.)
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Sandra Kraljevic Pavelic
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Pradhan I, Hembram P. Silicon supplementation stabilizes the effect of copper stress, the use of copper chaperones and genes involved: a review. Mol Biol Rep 2024; 51:543. [PMID: 38642191 DOI: 10.1007/s11033-024-09507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.
Collapse
Affiliation(s)
- Itishree Pradhan
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Padmalochan Hembram
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India.
| |
Collapse
|
3
|
Pestana M, García-Caparrós P, Saavedra T, Gama F, Abadía J, de Varennes A, Correia PJ. Nutritional Performance of Five Citrus Rootstocks under Different Fe Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:3252. [PMID: 37765416 PMCID: PMC10535202 DOI: 10.3390/plants12183252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Iron is an essential micronutrient for citrus, playing an important role in photosynthesis and yield. The aim of this paper was to evaluate the tolerance to Fe deficiency of five citrus rootstocks: sour orange (S), Carrizo citrange (C), Citrus macrophylla (M), Troyer citrange (T), and Volkamer lemon (V). Plants were grown for 5 weeks in nutrient solution that contained the following Fe concentrations (in µM): 0, 5, 10, 15, and 20. At the end of the experiment, biomass (dry weight-DW), leaf area, total leaf chlorophyll (CHL), and the activity of root chelate reductase (FCR) were recorded. Additionally, the mineral composition of roots (R) and shoots (S) was evaluated. Principal component analysis was used to study the relationships between all parameters and, subsequently, the relations between rootstocks. In the first component, N-S, P-S, Ca-S, Cu-S, Zn-S, Mn-S, Zn-R, and Mn-R concentrations were related to leaf CHL and FCR. Increases in leaf CHL, Mg-R, and DW (shoots and roots) were inversely related to Cu-R, which was shown in the second component. The values obtained were consistent for V10, C15, and C20, but in contrast for S0 and S5. In conclusion, micronutrient homeostasis in roots and shoots of all rootstocks were affected by Fe stress conditions. The Fe/Cu ratio was significantly related to CHL, which may be used to assist rootstock performance.
Collapse
Affiliation(s)
- Maribela Pestana
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal; (T.S.); (P.J.C.)
| | - Pedro García-Caparrós
- Department of Agronomy, Higher Engineering School, University of Almeria, Agrifood Campus of International Excellence CeiA3, Ctra. Sacramentos/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Teresa Saavedra
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal; (T.S.); (P.J.C.)
| | - Florinda Gama
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal; (T.S.); (P.J.C.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Javier Abadía
- Plant Biology Department, Estación Experimental de Aula Dei, CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Amarilis de Varennes
- Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Pedro José Correia
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE–Global Change and Sustainability Institute, Faculty of Science and Technology, University of Algarve, Campus of Gambelas, Building 8, 8005-139 Faro, Portugal; (T.S.); (P.J.C.)
| |
Collapse
|