1
|
Mushtaq NU, Saleem S, Rasool A, Shah WH, Tahir I, Seth CS, Rehman RU. Proline Tagging for Stress Tolerance in Plants. Int J Genomics 2025; 2025:9348557. [PMID: 40207093 PMCID: PMC11981710 DOI: 10.1155/ijog/9348557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/19/2024] [Indexed: 04/11/2025] Open
Abstract
In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Aadil Rasool
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Wasifa Hafiz Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | | | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| |
Collapse
|
2
|
Koc YE, Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108914. [PMID: 38981207 DOI: 10.1016/j.plaphy.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Salinity is a critical environmental stress factor that significantly reduces crop productivity and yield. A mutant B-type response regulator gene (hst1) has been shown to promote salinity tolerance in the YNU genotype. Previous studies on the hst1 gene showed a higher proline production capacity under salt stress. Using almost identical genetic backgrounded salt-tolerant (YNU) and salt-sensitive (Sister line) rice genotypes, we tested the function of proline in the hst1 gene salinity-tolerance mechanism by applying exogenous proline under control and salt-stress conditions. Morpho-physiological, biochemical, and molecular analysis of ST and SS plants was performed to clarify the salinity tolerance mechanism mediated by the exogenous proline. The ST and SS genotypes accumulated exogenous proline, and the ST genotype has higher proline levels than the SS genotype. However, exogenous proline improved salt tolerance only in the SS genotype. Exogenous proline promotes plant and root growth by stimulating photosynthetic pigments and photosynthesis. The exogenous proline has a reductive effect on MDA, and H2O2 protects plants against ROS. Interestingly, exogenous proline lowers Na+ and raises K+ accumulations under salt stress. In the SS genotype, exogenous proline increases the activity of antioxidant enzymes (SOD, CAT, and APX) to protect against salinity-induced damage. The exogenous proline application down-regulates proline-synthesis genes (OsP5CS1 and OsP5CR) and up-regulates proline-degradation genes. Also, exogenous proline increases the expression of the OsSalT and OsGRAS29 genes, improving salinity tolerance in the SS genotype. Our study has demonstrated that proline plays a significant role in conferring salt tolerance with the salinity-tolerance-related hst1 mechanisms.
Collapse
Affiliation(s)
- Yunus Emre Koc
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, 06800, Turkiye
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
3
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
4
|
Kumar V, Srivastava AK, Sharma D, Pandey SP, Pandey M, Dudwadkar A, Parab HJ, Suprasanna P, Das BK. Antioxidant Defense and Ionic Homeostasis Govern Stage-Specific Response of Salinity Stress in Contrasting Rice Varieties. PLANTS (BASEL, SWITZERLAND) 2024; 13:778. [PMID: 38592827 PMCID: PMC10975454 DOI: 10.3390/plants13060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Salt stress is one of the most severe environmental stresses limiting the productivity of crops, including rice. However, there is a lack of information on how salt-stress sensitivity varies across different developmental stages in rice. In view of this, a comparative evaluation of contrasting rice varieties CSR36 (salt tolerant) and Jaya (salt sensitive) was conducted, wherein NaCl stress (50 mM) was independently given either at seedling (S-stage), tillering (T-stage), flowering (F-stage), seed-setting (SS-stage) or throughout plant growth, from seedling till maturity. Except for S-stage, CSR36 exhibited improved NaCl stress tolerance than Jaya, at all other tested stages. Principal component analysis (PCA) revealed that the improved NaCl stress tolerance in CSR36 coincided with enhanced activities/levels of enzymatic/non-enzymatic antioxidants (root ascorbate peroxidase for T- (2.74-fold) and S+T- (2.12-fold) stages and root catalase for F- (5.22-fold), S+T- (2.10-fold) and S+T+F- (2.61-fold) stages) and higher accumulation of osmolytes (shoot proline for F-stage (5.82-fold) and S+T+F- (2.31-fold) stage), indicating better antioxidant capacitance and osmotic adjustment, respectively. In contrast, higher shoot accumulation of Na+ (14.25-fold) and consequent increase in Na+/K+ (14.56-fold), Na+/Mg+2 (13.09-fold) and Na+/Ca+2 (8.38-fold) ratio in shoot, were identified as major variables associated with S-stage salinity in Jaya. Higher root Na+ and their associated ratio were major deriving force for other stage specific and combined stage salinity in Jaya. In addition, CSR36 exhibited higher levels of Fe3+, Mn2+ and Co3+ and lower Cl- and SO42-, suggesting its potential to discriminate essential and non-essential nutrients, which might contribute to NaCl stress tolerance. Taken together, the findings provided the framework for stage-specific salinity responses in rice, which will facilitate crop-improvement programs for specific ecological niches, including coastal regions.
Collapse
Affiliation(s)
- Vikash Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- BARC Campus, Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur 492012, India
| | - Shailaja P. Pandey
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ayushi Dudwadkar
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Harshala J. Parab
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
5
|
Alhammad BA, Saleem K, Asghar MA, Raza A, Ullah A, Farooq TH, Yong JWH, Xu F, Seleiman MF, Riaz A. Cobalt and Titanium Alleviate the Methylglyoxal-Induced Oxidative Stress in Pennisetum divisum Seedlings under Saline Conditions. Metabolites 2023; 13:1162. [PMID: 37999257 PMCID: PMC10673477 DOI: 10.3390/metabo13111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants' growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl- (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum's root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 6300, Pakistan
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunzvik St., 2462 Martonvásár, Hungary
| | - Ali Raza
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abd Ullah
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taimoor Hassan Farooq
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha 410004, China
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 22 Lomma, Sweden
| | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Aamir Riaz
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 6300, Pakistan
| |
Collapse
|
6
|
Shao J, Tang W, Huang K, Ding C, Wang H, Zhang W, Li R, Aamer M, Hassan MU, Elnour RO, Hashem M, Huang G, Qari SH. How Does Zinc Improve Salinity Tolerance? Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:3207. [PMID: 37765371 PMCID: PMC10534951 DOI: 10.3390/plants12183207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.
Collapse
Affiliation(s)
- Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wei Tang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Can Ding
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Haocheng Wang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wenlong Zhang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Rehab O. Elnour
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub, Abha 64353, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
7
|
Meng D, Yuan MM, Li J. Editorial: Microbe assisted plant resistance to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1277682. [PMID: 37727856 PMCID: PMC10505755 DOI: 10.3389/fpls.2023.1277682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|