1
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Yuan L, Jiang H, Li T, Liu Q, Jiang X, Han X, Wei Y, Yin X, Wang S. A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses. Pathogens 2024; 13:505. [PMID: 38921802 PMCID: PMC11207035 DOI: 10.3390/pathogens13060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 μmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 μm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.
Collapse
Affiliation(s)
- Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Hang Jiang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Qibao Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Xing Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Xiangtian Yin
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (L.Y.); (Q.L.); (X.H.); (Y.W.)
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
3
|
Siller P, Skopeck B, Rosen K, Bartel A, Friese A, Rösler U. Impact of air humidity on the tenacity of different agents in bioaerosols. PLoS One 2024; 19:e0297193. [PMID: 38277366 PMCID: PMC10817179 DOI: 10.1371/journal.pone.0297193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024] Open
Abstract
Despite the variety of pathogens that are transmitted via the airborne route, few data are available on factors that influence the tenacity of airborne pathogens. In order to better understand and thus control airborne infections, knowledge of these factors is important. In this study, three agents, S. aureus, G. stearothermophilus spores and the MS2 bacteriophage, were aerosolized at relative humidities (RH) varying between 30% and 70%. Air samples were then analyzed to determine the concentration of the agents. S. aureus was found to have significantly lower survival rate in the aerosol at RH above 60%. It showed the lowest recovery rates of the three agents, ranging from 0.13% at approximately 70% RH to 4.39% at 30% RH. G. stearothermophilus spores showed the highest tenacity with recovery rates ranging from 41.85% to 61.73% with little effect of RH. For the MS2 bacteriophage, a significantly lower tenacity in the aerosol was observed with a recovery rate of 4.24% for intermediate RH of approximately 50%. The results of this study confirm the significant influence of the RH on the tenacity of airborne microorganisms depending on the specific agent. These data show that the behavior of microorganism in bioaerosols is varies under different environmental conditions.
Collapse
Affiliation(s)
- Paul Siller
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research–TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Britta Skopeck
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research–TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Rosen
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research–TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexander Bartel
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research–TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Uwe Rösler
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research–TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|