1
|
Wang X, Liu C, Li T, Zhou F, Sun H, Li F, Ma Y, Jia H, Zhang X, Shi W, Gong C, Li J. Hydrogen sulfide antagonizes cytokinin to change root system architecture through persulfidation of CKX2 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:1377-1390. [PMID: 39279035 DOI: 10.1111/nph.20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule, which has been shown to play an important role in plant growth and development by coupling with various phytohormones. However, the relationship between H2S and cytokinin (CTK) and the mechanisms by which H2S and CTK affect root growth remain poorly understood. Endogenous CTK was analyzed by UHPLC-ESI-MS/MS. Persulfidation of cytokinin oxidase/dehydrogenases (CKXs) was analyzed by mass spectrometry (MS). ckx2/CKX2wild-type (WT), OE CKX2 and ckx2/CKX2Cys(C)62alanine(A) transgenic lines were isolated with the ckx2 background. H2S is linked to CTK content by CKX2, which regulates root system architecture (RSA). Persulfidation at cysteine (Cys)62 residue of CKX2 enhances CKX2 activity, resulting in reduced CTK content. We utilized 35S-LCD/oasa1 transgenic lines to investigate the effect of endogenous H2S on RSA, indicating that H2S reduces the gravitropic set-point angle (GSA), shortens root hairs, and increases the number of lateral roots (LRs). The persulfidation of CKX2Cys62 changes the elongation of cells on the upper and lower flanks of LR elongation zone, confirming that Cys62 of CKX2 is the specificity target of H2S to regulate RSA in vivo. In conclusion, this study demonstrated that H2S negatively regulates CTK content and affects RSA by persulfidation of CKX2Cys62 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuixia Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Naeem MB, Jahan S, Rashid A, Shah AA, Raja V, El-Sheikh MA. Improving maize yield and drought tolerance in field conditions through activated biochar application. Sci Rep 2024; 14:25000. [PMID: 39443551 PMCID: PMC11499918 DOI: 10.1038/s41598-024-76082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Amidst depleting water resources, rising crop water needs, changing climates, and soil fertility decline from inorganic modifications of soil, the need for sustainable agricultural solutions has been more pressing. The experimental work aimed to inspect the potential of organically activated biochar in improving soil physicochemical and nutrient status as well as improving biochemical and physiological processes, and optimizing yield-related attributes under optimal and deficit irrigation conditions. Biochar enhances soil structure, water retention, and nutrient availability, while improving plant nutrient uptake and drought resilience. The field experiment with maize crop was conducted in Hardaas Pur (32°38.37'N, 74°9.00'E), Gujrat, Pakistan. The experiment involved the use of DK-9108, DK-6321, and Sarhaab maize hybrid seeds, with five moisture levels of evapotranspiration (100% ETC, 80% ETC, 70% ETC, 60% ETC, and 50% ETC) maintained throughout the crop seasons. Furthermore, activated biochar was applied at three levels: 0 tons/ha (no biochar), 5 tons per hectare, and 10 tons per hectare. The study's findings revealed significant improvements in soil organic matter, bulk density, nutrient profile and total porosity with biochar supplementation in soil. Maize plants grown under lower levels of ETC in biochar supplemented soil had enhanced membrane stability index (1.6 times higher) increased protein content (1.4 times higher), reduced malondialdehyde levels (0.7 times lower), improved antioxidant enzyme activity (1.3 times more SOD and POD activity, and 1.2 times more CAT activity), improved relative growth (1.05 times more) and enhanced yield parameters (26% more grain and stover yield, 16% more 1000-seed weight, 29% more total seed weight, 33% more apparent water productivity) than control. Additionally, among the two biochar application levels tested, the 5 tons/ha dose demonstrated superior efficiency compared to the 10 tons/ha biochar dose.
Collapse
Affiliation(s)
- Muhammad Bilal Naeem
- Department of Botany, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Summera Jahan
- Department of Botany, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan.
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Audil Rashid
- Department of Botany, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Egedigwe U, Udengwu O, Ekeleme-Egedigwe C, Maduakor C, Urama C, Odo C, Ojua E. Integrated stress responses in okra plants (cv. ''Meya']: unravelling the mechanisms underlying drought and nematode co-occurrence. BMC PLANT BIOLOGY 2024; 24:986. [PMID: 39427110 PMCID: PMC11490165 DOI: 10.1186/s12870-024-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Climate change threatens sub-Saharan Africa's agricultural production, causing abiotic and biotic stressors. The study of plant responses to joint stressors is crucial for understanding molecular processes and identifying resilient crops for global food security. This study aimed to explore the shared and tailored responses of okra plants (cv. ''Meya'), at the biochemical and molecular levels, subjected to combined stresses of drought and Meloidogyne incognita infection. DESIGN The study involved 240 okra plants in a completely randomized design, with six treatments replicated 20 times. Okra plants were adequately irrigated at the end of every 10-days water deficit that lasted for 66 days (D). Also, the plants were infected with M. incognita for 66 days and irrigated at 2-days intervals (R). The stresses were done independently, in sequential combination (D before R and R before D) and concurrently (R and D). All biochemical and antioxidant enzyme assays were carried out following standard procedures. RESULTS Significant reductions in leaf relative water content were recorded in all stressed plants, especially in leaves of plants under individual drought stress (D) (41.6%) and plants stressed with root-knot nematode infection before drought stress (RBD) (41.4%). Malondialdehyde contents in leaf tissues from plants in D, nematode-only stress (RKN), drought stress before root-knot nematode infection (DBR), RBD, and concurrent drought-nematode stress (RAD) significantly increased by 320.2%, 152.9%, 186.5%, 283.7%, and 109.6%, respectively. Plants in D exhibited the highest superoxide dismutase activities in leaf (147.1% increase) and root (105.8% increase) tissues. Catalase (CAT) activities were significantly increased only in leaves of plants in D (90.8%) and RBD (88.9%), while only roots of plants in D exhibited a substantially higher CAT activity (139.3% increase) in comparison to controlled plants. Okra plants over-expressed NCED3 and under-expressed Me3 genes in leaf tissues. The NCED3 gene was overexpressed in roots from all treatments, while CYP707A3 was under-expressed only in roots of plants in RBD and RKN. CYP707A3 and NCED3 were grouped as closely related genes, while members of the Me3 genes were clustered into a separate group. CONCLUSION The biochemical and molecular responses observed in okra plants (cv. ''Meya') subjected to combined stresses of drought and Meloidogyne incognita infection provide valuable insights into enhancing crop resilience under multifaceted stress conditions, particularly relevant for agricultural practices in sub-Saharan Africa facing increasing climatic challenges.
Collapse
Affiliation(s)
- Uchenna Egedigwe
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Obi Udengwu
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chima Ekeleme-Egedigwe
- Department of Biochemistry, Faculty of Biological Sciences, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Chima Maduakor
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Clifford Urama
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chidera Odo
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Eugene Ojua
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
4
|
Agar G, Yagci Ergul S, Yuce M, Arslan Yuksel E, Aydin M, Taspinar MS. Ellagic acid alleviates aluminum and/or drought stress through morpho-physiochemical adjustments and stress-related gene expression in Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59521-59532. [PMID: 39358657 DOI: 10.1007/s11356-024-35185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.
Collapse
Affiliation(s)
- Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Semra Yagci Ergul
- Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey
| | - Merve Yuce
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
5
|
Alemu MD, Barak V, Shenhar I, Batat D, Saranga Y. Dynamic physiological response of tef to contrasting water availabilities. FRONTIERS IN PLANT SCIENCE 2024; 15:1406173. [PMID: 39045591 PMCID: PMC11264344 DOI: 10.3389/fpls.2024.1406173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Global climate change is leading to increased frequency of extreme climatic events, higher temperatures and water scarcity. Tef (Eragrostis tef (Zucc.) Trotter) is an underutilized C4 cereal crop that harbors a rich gene pool for stress resilience and nutritional quality. Despite gaining increasing attention as an "opportunity" crop, physiological responses and adaptive mechanisms of tef to drought stress have not been sufficiently investigated. This study was aimed to characterize the dynamic physiological responses of tef to drought. Six selected tef genotypes were subjected to high-throughput whole-plant functional phenotyping to assess multiple physiological responses to contrasting water regimes. Drought stress led to a substantial reduction in total, shoot and root dry weights, by 59%, 62% and 44%, respectively (averaged across genotypes), and an increase of 50% in the root-to-shoot ratio, relative to control treatment. Drought treatment induced also significant reductions in stomatal conductance, transpiration, osmotic potential and water-use efficiency, increased chlorophyll content and delayed heading. Tef genotypes exhibited diverse water-use strategies under drought: water-conserving (isohydric) or non-conserving (anisohydric), or an intermediate strategy, as well as variation in drought-recovery rate. Genotype RTC-290b exhibited outstanding multifaceted drought-adaptive performance, including high water-use efficiency coupled with high productivity under drought and control treatments, high chlorophyll and transpiration under drought, and faster drought recovery rate. This study provides a first insight into the dynamic functional physiological responses of tef to water deficiency and the variation between genotypes in drought-adaptive strategies. These results may serve as a baseline for further studies and for the development of drought-resistant tef varieties.
Collapse
Affiliation(s)
- Muluken Demelie Alemu
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Crop Research, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Vered Barak
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itamar Shenhar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dor Batat
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Su X, Yang Z, Zhou C, Geng S, Chen S, Cai N, Tang J, Chen L, Xu Y. The Response and Evaluation of Morphology, Physiology, and Biochemistry Traits in Triploid Passiflora edulis Sims 'Mantianxing' to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1685. [PMID: 38931117 PMCID: PMC11207800 DOI: 10.3390/plants13121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
As one of the most influential environmental factors, drought stress greatly impacts the development and production of plants. Triploid-induced Passiflora edulis Sims 'Mantianxing' is an important new cultivar for multi-resistance variety selective breeding, which is one of the P. edulis breeding essential targets. However, the performance of triploid 'Mantianxing' under drought stress is unknown. In order to study the drought resistance of triploid 'Mantianxing', our study compared drought-related indicators in diploids and triploids under natural drought experiments, including morphological, physiological, and biochemical characteristics. Results showed that triploid P. edulis 'Mantianxing' showed variable responses to drought treatment. Compared with diploids, triploids showed higher photosynthesis and chlorophyll fluorescence, osmotic adjustment substances, and antioxidant enzyme activity under drought stress and faster chlorophyll biosynthesis and growth recovery after rewatering. Generally speaking, these results indicate that the drought resistance of triploid P. edulis is superior to diploid. This study provides scientific information for breeding stress tolerance variety of P. edulis 'Mantianxing' new cultivar.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Zhenxin Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shili Geng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| |
Collapse
|
7
|
Amissah S, Ankomah G, Lee RD, Perry CD, Washington BJ, Porter WM, Virk S, Bryant CJ, Vellidis G, Harris GH, Cabrera M, Franklin DH, Diaz-Perez JC, Sintim HY. Assessing corn recovery from early season nutrient stress under different soil moisture regimes. FRONTIERS IN PLANT SCIENCE 2024; 15:1344022. [PMID: 38510438 PMCID: PMC10950915 DOI: 10.3389/fpls.2024.1344022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Corn (Zea mays) biomass accumulation and nutrient uptake by the six-leaf collar (V6) growth stage are low, and therefore, synchronizing nutrient supply with crop demand could potentially minimize nutrient loss and improve nutrient use efficiency. Knowledge of corn's response to nutrient stress in the early growth stages could inform such nutrient management. Field studies were conducted to assess corn recovery from when no fertilizer application is made until the V6 growth stage, and thereafter, applying fertilizer rates as those in non-stressed conditions. The early season nutrient stress and non-stress conditions received the same amount of nutrients. As the availability of nutrients for plant uptake is largely dependent on soil moisture, corn recovery from the early season nutrient stress was assessed under different soil moisture regimes induced via irrigation scheduling at 50% and 80% field capacity under overhead and subsurface drip irrigation (SSDI) systems. Peanut (Arachis hypogaea) was the previous crop under all conditions, and the fields were under cereal rye (Secale cereale) cover crop prior to planting corn. At the V6 growth stage, the nutrient concentrations of the early season-stressed crops, except for copper, were above the minimum threshold of sufficiency ranges reported for corn. However, the crops showed poor growth, with biomass accumulation being reduced by over 50% compared to non-stressed crops. Also, the uptake of all nutrients was significantly lower under the early season nutrient stress conditions. The recovery of corn from the early season nutrient stress was low. Compared to non-stress conditions, the early season nutrient stress caused 1.58 Mg ha-1 to 3.4 Mg ha-1 yield reduction. The percent yield reduction under the SSDI system was 37.6-38.2% and that under the overhead irrigation system was 11.7-13%. The high yield reduction from the early season nutrient stress under the SSDI system was because of water stress conditions in the topsoil soil layer. The findings of the study suggest ample nutrient supply in the early season growth stage is critical for corn production, and thus, further studies are recommended to determine the optimum nutrient supply for corn at the initial growth stages.
Collapse
Affiliation(s)
- Solomon Amissah
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Godfred Ankomah
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Robert D. Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Calvin D. Perry
- C. M. Stripling Irrigation Research Park, University of Georgia, Camilla, GA, United States
| | - Bobby J. Washington
- C. M. Stripling Irrigation Research Park, University of Georgia, Camilla, GA, United States
| | - Wesley M. Porter
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Simerjeet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Corey J. Bryant
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, United States
| | - George Vellidis
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Glendon H. Harris
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Miguel Cabrera
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Dorcas H. Franklin
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Juan C. Diaz-Perez
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Henry Y. Sintim
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| |
Collapse
|
8
|
Zhang X, Wang Y, Wang J, Yu M, Zhang R, Mi Y, Xu J, Jiang R, Gao J. Elevation Influences Belowground Biomass Proportion in Forests by Affecting Climatic Factors, Soil Nutrients and Key Leaf Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:674. [PMID: 38475521 PMCID: PMC10935182 DOI: 10.3390/plants13050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Forest biomass allocation is a direct manifestation of biological adaptation to environmental changes. Studying the distribution patterns of forest biomass along elevational gradients is ecologically significant for understanding the specific impacts of global change on plant resource allocation strategies. While aboveground biomass has been extensively studied, research on belowground biomass remains relatively limited. Furthermore, the patterns and driving factors of the belowground biomass proportion (BGBP) along elevational gradients are still unclear. In this study, we investigated the specific influences of climatic factors, soil nutrients, and key leaf traits on the elevational pattern of BGBP using data from 926 forests at 94 sites across China. In this study, BGBP data were calculated from the root biomass to the depth of 50 cm. Our findings indicate considerable variability in forest BGBP at a macro scale, showing a significant increasing trend along elevational gradients (p < 0.01). BGBP significantly decreases with increasing temperature and precipitation and increases with annual mean evapotranspiration (MAE) (p < 0.01). It decreases significantly with increasing soil phosphorus content and increases with soil pH (p < 0.01). Key leaf traits (leaf nitrogen (LN) and leaf phosphorus (LP)) are positively correlated with BGBP. Climatic factors (R2 = 0.46) have the strongest explanatory power for the variation in BGBP along elevations, while soil factors (R2 = 0.10) and key leaf traits (R2 = 0.08) also play significant roles. Elevation impacts BGBP directly and also indirectly through influencing such as climate conditions, soil nutrient availability, and key leaf traits, with direct effects being more pronounced than indirect effects. This study reveals the patterns and controlling factors of forests' BGBP along elevational gradients, providing vital ecological insights into the impact of global change on plant resource allocation strategies and offering scientific guidance for ecosystem management and conservation.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Yun Wang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Jiangfeng Wang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Mengyao Yu
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Ruizhi Zhang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Yila Mi
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Jiali Xu
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
| | - Ruifang Jiang
- Xinjiang Uyghur Autonomous Region Forestry Planning Institute, Urumqi 830046, China;
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (Y.W.); (J.W.); (M.Y.); (R.Z.); (Y.M.); (J.X.)
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100863, China
| |
Collapse
|
9
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
10
|
Wu C, Liu B, Zhang X, Wang M, Liang H. Phytohormone Response of Drought-Acclimated Illicium difengpi (Schisandraceae). Int J Mol Sci 2023; 24:16443. [PMID: 38003632 PMCID: PMC10671654 DOI: 10.3390/ijms242216443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Illicium difengpi (Schisandraceae), which is an endemic, medicinal, and endangered species found in small and isolated populations that inhabit karst mountain areas, has evolved strategies to adapt to arid environments and is thus an excellent material for exploring the mechanisms of tolerance to severe drought. In experiment I, I. difengpi plants were subjected to three soil watering treatments (CK, well-watered treatment at 50% of the dry soil weight for 18 days; DS, drought stress treatment at 10% of the dry soil weight for 18 days; DS-R, drought-rehydration treatment at 10% of the dry soil weight for 15 days followed by rewatering to 50% of the dry soil weight for another 3 days). The effects of the drought and rehydration treatments on leaf succulence, phytohormones, and phytohormonal signal transduction in I. difengpi plants were investigated. In experiment II, exogenous abscisic acid (ABA, 60 mg L-1) and zeatin riboside (ZR, 60 mg L-1) were sprayed onto DS-treated plants to verify the roles of exogenous phytohormones in alleviating drought injury. Leaf succulence showed marked changes in response to the DS and DS-R treatments. The relative concentrations of ABA, methyl jasmonate (MeJA), salicylic acid glucoside (SAG), and cis-zeatin riboside (cZR) were highly correlated with relative leaf succulence. The leaf succulence of drought-treated I. difengpi plants recovered to that observed with the CK treatment after exogenous application of ABA or ZR. Differentially expressed genes involved in biosynthesis and signal transduction of phytohormones (ABA and JA) in response to drought stress were identified by transcriptomic profiling. The current study suggested that the phytohormones ABA, JA, and ZR may play important roles in the response to severe drought and provides a preliminary understanding of the physiological mechanisms involved in phytohormonal regulation in I. difengpi, an endemic, medicinal, and highly drought-tolerant plant found in extremely small populations in the karst region of South China.
Collapse
|