1
|
Luo L, Zhang L, Gu R, Ni S, Yu J, Gao Y, Fang C. Genome-Wide Identification and Functional Analysis of AP2/ERF Gene Family in Passiflora edulis Sims. PLANTS (BASEL, SWITZERLAND) 2025; 14:645. [PMID: 40094515 PMCID: PMC11901831 DOI: 10.3390/plants14050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The Apetala2/Ethylene Responsive Factor (AP2/ERF) family represents a critical group of transcription factors in plants, recognized for their roles in growth, development, fruit ripening, and postharvest processes. This study aimed to identify and characterize the AP2/ERF gene family in passion fruit (Passiflora edulis Sims) and investigate their potential roles in flavor enhancement. A total of 91 PeAP2/ERF genes were identified and classified into five subfamilies. Chromosome localization and collinearity analysis demonstrated their distribution across all nine chromosomes of passion fruit, with tandem duplication events identified as a key driver of family expansion. Exon-intron configurations and motif compositions were highly conserved among PeAP2/ERF genes. Promoter cis-acting element analysis indicated potential regulation by environmental signals, including abiotic and biotic stresses, as well as hormonal cues. Postharvest storage induced the expression of 59 PeAP2/ERF genes over time. Notably, PeAP2-10 was found to enhance the expression of PeSTP6, a gene associated with sugar transport, suggesting its potential influence on the flavor profile of passion fruit. These findings provide valuable insights into the functional roles of PeAP2/ERF genes in passion fruit, highlighting their significance in postharvest management and flavor quality enhancement strategies.
Collapse
Affiliation(s)
- Lanjun Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Liping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ronghao Gu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Shihao Ni
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jingyao Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Yachao Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Baoting Research Institute, Hainan University, Baoting 572300, China
| |
Collapse
|
2
|
Wei X, Xu L, Dong S, He N, Xi Q, Yao D, Wang Q, Zuo Y, Ling C, Qi M, Bai W, Han K, Zhao Y, Tang L, Gao Y. SaTDT enhanced plant tolerance to NaCl stress by modulating the levels of malic acid and citric acid in cells. PLANT MOLECULAR BIOLOGY 2024; 115:4. [PMID: 39668291 DOI: 10.1007/s11103-024-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/04/2024] [Indexed: 12/14/2024]
Abstract
The issue of soil salinization is a global concern that significantly impairs crop productivity, quality, and distribution. Tonoplast Dicarboxylate Transporter (TDT) is a pivotal malic acid transporter localized on the vacuolar membrane, involving in maintaining intracellular pH homeostasis in plants. However, the molecular mechanisms and regulatory pathways underlying plant salt tolerance through TDT remain elusive. In this study, we cloned a gene encoding vacuolar membrane dicarboxylic acid transporter designated as SaTDT from the halophyte Spartina alterniflora. Subsequently, its role in regulating salt stress was investigated. The heterologous expression of SaTDT in Arabidopsis thaliana was observed to enhance the transgenic plants' tolerance to salt stress and alleviate the growth damage caused by this stress. The overexpression of SaTDT can simultaneously enhance plant photosynthetic efficiency by regulating the cellular contents of malic acid and citric acid, or by increasing the activity of MDH and PEPC enzymes. It also regulates and balances energy utilization during carbon assimilation under salt-stressed conditions, thereby establishing an energetic foundation for enhancing plant tolerance to stress. SaTDT also has the capacity to enhance the plant cells' ability in regulating antioxidant enzyme activity or osmotic accumulation, thereby playing a crucial role in maintaining intracellular redox homeostasis. In conclusion, our findings establish a foundation basis for elucidating the regulatory role of the SaTDT gene in S.alterniflora's adaptation to high-salinity habitats.
Collapse
Affiliation(s)
- Xiangyu Wei
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Li Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Suisui Dong
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Nina He
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Qianqian Xi
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Dan Yao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Qianqian Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Yue Zuo
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ling
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Meiting Qi
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Wen Bai
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Kai Han
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Yuwei Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.
- College of Life Science, Northwest University, Xi'an, China.
| | - Long Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Yang Gao
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| |
Collapse
|
3
|
Shad MA, Wu S, Rao MJ, Luo X, Huang X, Wu Y, Zhou Y, Wang L, Ma C, Hu L. Evolution and Functional Dynamics of TCP Transcription Factor Gene Family in Passion Fruit ( Passiflora edulis). PLANTS (BASEL, SWITZERLAND) 2024; 13:2568. [PMID: 39339543 PMCID: PMC11435056 DOI: 10.3390/plants13182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Passion fruit is a valued tropical fruit crop that faces environment-related growth strains. TCP genes are important for both growth modulation and stress prevention in plants. Herein, we systematically analyzed the TCP gene family in passion fruit, recognizing 30 members. Genes exhibiting closer phylogenetic relationships exhibited similar protein and gene structures. Gene members of the TCP family showed developmental-stage- or tissue-specific expression profiles during the passion fruit life cycle. Transcriptome data also demonstrated that many PeTCPs showed induced expression in response to hormonal treatments and cold, heat, and salt stress. Based on transcriptomics data, eight candidate genes were chosen for preferential gene expression confirmation under cold stress conditions. The qRT-PCR assays suggested PeTCP15/16/17/19/23 upregulation, while PeTCP1/11/25 downregulation after cold stress. Additionally, TCP19/20/29/30 exhibited in silico binding with cold-stress-related miRNA319s. GFP subcellular localization assays exhibited PeTCP19/1 were localized at the nucleus. This study will aid in the establishment of novel germplasm, as well as the further investigation of the roles of PeTCPs and their cold stress resistance characteristics.
Collapse
Affiliation(s)
- Munsif Ali Shad
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.A.S.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| | - Songguo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| | - Muhammad Junaid Rao
- State Key Loboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Xiaoying Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| | - Xiaojin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| | - Yuxin Wu
- College of Life Sciences and Technology, Huazhong University of Sciences and Technology, Wuhan 430074, China;
| | - Yuhong Zhou
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.A.S.); (L.W.)
| | - Lingqiang Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.A.S.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| | - Chongjian Ma
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.A.S.); (L.W.)
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (S.W.); (X.L.)
| |
Collapse
|
4
|
Xu Y, Zhang Y, Ma F, Zhao J, Yang H, Song S, Zhang S. Identification of DREB Family Genes in Banana and Their Function under Drought and Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2119. [PMID: 39124237 PMCID: PMC11314547 DOI: 10.3390/plants13152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Bananas are one of the most important cash crops in the tropics and subtropics. Drought and low-temperature stress affect the growth of banana. The DREB (dehydration responsive element binding protein) gene family, as one of the major transcription factor families, plays crucial roles in defense against abiotic stress. Currently, systematic analyses of the banana DREB (MaDREB) gene family have not yet been reported. In this study, 103 members of the MaDREB gene family were identified in the banana genome. In addition, transcriptomic analysis results revealed that MaDREBs responded to drought and cold stress. The expression of MaDREB14/22/51 was induced by drought and cold stress; these geneswere selected for further analysis. The qRT-PCR validation results confirmed the transcriptome results. Additionally, transgenic Arabidopsis plants overexpressing MaDREB14/22/51 exhibited enhanced resistance to drought and cold stress by reducing MDA content and increasing PRO and soluble sugar content. This study enhances our understanding of the function of the MaDREB gene family, provides new insights into their regulatory role under abiotic stress, and lays a good foundation for improving drought and cold stress-tolerant banana verities.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Yanshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| | - Funing Ma
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Jingxi Zhao
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Huiting Yang
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Shun Song
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| |
Collapse
|
5
|
Panda M, Pradhan S, Mukherjee PK. Transcriptomics reveal useful resources for examining fruit development and variation in fruit size in Coccinia grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386041. [PMID: 38863541 PMCID: PMC11165041 DOI: 10.3389/fpls.2024.1386041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Introduction The Cucurbitaceae family comprises many agronomically important members, that bear nutritious fruits and vegetables of great economic importance. Coccinia grandis, commonly known as Ivy gourd, belongs to this family and is widely consumed as a vegetable. Members of this family are known to display an impressive range of variation in fruit morphology. Although there have been studies on flower development in Ivy gourd, fruit development remains unexplored in this crop. Methods In this study, comparative transcriptomics of two Ivy gourd cultivars namely "Arka Neelachal Kunkhi" (larger fruit size) and "Arka Neelachal Sabuja" (smaller fruit size) differing in their average fruit size was performed. A de novo transcriptome assembly for Ivy gourd was developed by collecting fruits at different stages of development (5, 10, 15, and 20 days after anthesis i.e. DAA) from these two varieties. The transcriptome was analyzed to identify differentially expressed genes, transcription factors, and molecular markers. Results The transcriptome of Ivy gourd consisted of 155205 unigenes having an average contig size of 1472bp. Unigenes were annotated on publicly available databases to categorize them into different biological functions. Out of these, 7635 unigenes were classified into 38 transcription factor (TF) families, of which Trihelix TFs were most abundant. A total of 11,165 unigenes were found to be differentially expressed in both the varieties and the in silico expression results were validated through real-time PCR. Also, 98768 simple sequence repeats (SSRs) were identified in the transcriptome of Ivy gourd. Discussion This study has identified a number of genes, including transcription factors, that could play a crucial role in the determination of fruit shape and size in Ivy gourd. The presence of polymorphic SSRs indicated a possibility for marker-assisted selection for crop breeding in Ivy gourd. The information obtained can help select candidate genes that may be implicated in regulating fruit development and size in other fruit crops.
Collapse
Affiliation(s)
- Mitrabinda Panda
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Seema Pradhan
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Pulok K. Mukherjee
- Biotechnology Research Innovation Council-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Imphal, India
| |
Collapse
|
6
|
Yu C, Wang P, Zhang S, Liu J, Cheng Y, Zhang S, Wu Z. Passionfruit Genomic Database (PGD): a comprehensive resource for passionfruit genomics. BMC Genomics 2024; 25:157. [PMID: 38331722 PMCID: PMC10851451 DOI: 10.1186/s12864-024-10069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Passionfruit (Passiflora edulis) is a significant fruit crop in the commercial sector, owing to its high nutritional and medicinal value. The advent of high-throughput genomics sequencing technology has led to the publication of a vast amount of passionfruit omics data, encompassing complete genome sequences and transcriptome data under diverse stress conditions. To facilitate the efficient integration, storage, and analysis of these large-scale datasets, and to enable researchers to effectively utilize these omics data, we developed the first passionfruit genome database (PGD). The PGD platform comprises a diverse range of functional modules, including a genome browser, search function, heatmap, gene expression patterns, various tools, sequence alignment, and batch download, thereby providing a user-friendly interface. Additionally, supplementary practical tools have been developed for the PGD, such as gene family analysis tools, gene ontology (GO) terms, a pathway enrichment analysis, and other data analysis and mining tools, which enhance the data's utilization value. By leveraging the database's robust scalability, the intention is to continue to collect and integrate passionfruit omics data in the PGD, providing comprehensive and in-depth support for passionfruit research. The PGD is freely accessible via http://passionfruit.com.cn .
Collapse
Affiliation(s)
- Chaowei Yu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), Yangtze University, Jingzhou, 434025, China
| | - Peng Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), Yangtze University, Jingzhou, 434025, China
| | - Shengjie Zhang
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jindian Liu
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingyin Cheng
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), Yangtze University, Jingzhou, 434025, China.
| | - Zujian Wu
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
8
|
Chen G, Xu Y, Gui J, Huang Y, Ma F, Wu W, Han T, Qiu W, Yang L, Song S. Characterization of Dof Transcription Factors and the Heat-Tolerant Function of PeDof-11 in Passion Fruit ( Passiflora edulis). Int J Mol Sci 2023; 24:12091. [PMID: 37569467 PMCID: PMC10418448 DOI: 10.3390/ijms241512091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Abiotic stress is the focus of passion fruit research since it harms the industry, in which high temperature is an important influencing factor. Dof transcription factors (TFs) act as essential regulators in stress conditions. TFs can protect against abiotic stress via a variety of biological processes. There is yet to be published a systematic study of the Dof (PeDof) family of passion fruit. This study discovered 13 PeDof family members by using high-quality genomes, and the members of this characterization were identified by bioinformatics. Transcriptome sequencing and qRT-PCR were used to analyze the induced expression of PeDofs under high-temperature stress during three periods, in which PeDof-11 was significantly induced with high expression. PeDof-11 was then chosen and converted into yeast, tobacco, and Arabidopsis, with the findings demonstrating that PeDof-11 could significantly respond to high-temperature stress. This research lays the groundwork for a better understanding of PeDof gene regulation under high-temperature stress.
Collapse
Affiliation(s)
- Ge Chen
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| | - Jie Gui
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Yongcai Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Funing Ma
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| | - Wenhua Wu
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
| | - Te Han
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
| | - Wenwu Qiu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Liu Yang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Shun Song
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| |
Collapse
|