1
|
Singh B, Saxena A, Sharma RA. Fungal elicitors increase cell biomass, pyrroloquinazoline alkaloids production and gene expression levels of biosynthetic pathways in Adhatoda vasica Nees cell cultures. J Biotechnol 2025; 403:40-51. [PMID: 40164412 DOI: 10.1016/j.jbiotec.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Adhatoda vasica Nees (Fam. - Acanthaceae) is used in the treatment of cold, cough, chronic bronchitis, and asthma. The plant species contain vasicine, vasicinone, 2-acetyl benzyl amine, adhatodine, vasicinolone, deoxyvasicinone, and vasicine acetate. To examine the effects of fungal elicitors on the production of pyrroloquinazoline alkaloids, five fungal elicitors (Alternaria alternata, Rhizoctonia solani, Colletotrichum gloeosporioides, Colletotrichum capsica, and Puccinia thwaitesii) were used. Four concentrations (2.5, 5.0, 10, and 20 %) of 5 fungal elicitors were added in the MS culture medium. The concentrations were designed to observe their effects (minimal to maximal) on growth and production of alkaloids in cell cultures. The seedlings of this species were transferred onto Murashige and Skoog medium containing IAA (1.5 mg/L) and BA (1.0 mg/L). The maximum quantity of vasicine (1.25 ± 0.023 %; p < 0.001) was recorded in 6 weeks old callus. The quantity of vasicine was lower in callus (1.25 ± 0.023 %; p < 0.001) than aerial parts (6.64 ± 0.034 %; p < 0.01) and roots (5.97 ± 0.097 %; p < 0.01). Alternaria alternata (10 %) increased the growth of cell biomass as well as anthranilate synthase and anthranilate N-methyl transferase activities. Similarly, Alternaria alternata showed maximum increase in the production of vasicine whereas other elicitors displayed moderate increase in alkaloid production. The expression quantities of 10 genes, involved in pyrroloquinazoline alkaloids biosynthesis, were determined in this study. The maximum expression level (11.38-fold) of anthranilate synthase was observed in elicited cells treated with A. alternata. The study results suggest widespread use of fungal elicitors in increasing the production of secondary metabolites as well as gene expression levels in plant cell cultures.
Collapse
Affiliation(s)
- Bharat Singh
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India.
| | - Anuja Saxena
- Institute of Biotechnology, Amity University Rajasthan, Jaipur 303 002, India
| | - Ram Avtar Sharma
- Department of Botany, University of Rajasthan, Jaipur 302 004, India
| |
Collapse
|
2
|
Sharma S, Araujo ASF. Microbial crosstalk: decoding interactions to generate efficient SynComs. TRENDS IN PLANT SCIENCE 2025; 30:445-447. [PMID: 39627095 DOI: 10.1016/j.tplants.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 05/10/2025]
Abstract
Limited studies have explored the complex and intense crosstalk between microbes within synthetic microbial communities (SynComs). Here, we highlight recent findings by Zohair et al., who unraveled the metabolic interactions between co-cultured microbes. We provide insights and perspectives for harnessing these interactions to design efficient SynComs for sustainable agriculture.
Collapse
Affiliation(s)
- Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | | |
Collapse
|
3
|
Hamid R, Panahi B, Jacob F, Shahriari AG. Identification of critical transition signal (CTS) to characterize regulated stochasticity during ABA-induced growth-to-defense transition. BMC PLANT BIOLOGY 2025; 25:518. [PMID: 40275192 PMCID: PMC12020100 DOI: 10.1186/s12870-025-06580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Abscisic acid (ABA) plays a central role in regulating plant responses to abiotic stress. It orchestrates a complex regulatory network that facilitates the transition from growth to defense. Understanding the molecular mechanisms underlying this ABA-induced transition from growth to defense is essential for elucidating plant adaptive strategies under environmental stress conditions. RESULTS In this study, we used a refined dynamic network biomarker (DNB) approach to quantitatively identify the critical transition signal (CTS) and characterize the regulated stochasticity during the ABA-induced transition from growth to defense in Arabidopsis thaliana. By integrating high-resolution time-series RNA-seq data with dynamic network analysis, we identified a set of DNB genes that serve as key molecular regulators of this transition. The critical transition phase was identified precisely at the ninth time point (6 h after treatment), which marks the crucial switch from a growth-dominated to a defense -oriented state. Gene Ontology (GO) enrichment analysis revealed a significant overrepresentation of defense-related biological processes, while STRING network analysis revealed strong functional interactions between DNB genes and differentially expressed genes (DEGs) and highlighted key regulatory hubs. In particular, key hub genes such as PIF4, TPS8, NIA1, and HSP90-5 were identified as potential master regulators of ABA-mediated defense activation, highlighting their importance for plant stress adaptation. CONCLUSIONS By integrating a network-driven transcriptomic analysis, this study provides new insights into the molecular basis of ABA-induced transitions from growth to defense. The identification of CTS provides a new perspective on regulated stochasticity in plant stress responses and provides a conceptual framework for improving crop stress resistance. In addition, the establishment of a comprehensive database of ABA-responsive defense genes represents a valuable resource for future research on plant adaptation and resilience.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Tabriz, 5156915-598, Iran.
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Amir Ghaffar Shahriari
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran.
| |
Collapse
|
4
|
Shabbir R, Javed T, Wenzhi W, Yating C, Benpeng Y, Linbo S, Tingting S, Shuzhen Z, Chen P. Insights into recent advances in secondary metabolites (SMs)-mediated defense responses in plants. Crit Rev Biotechnol 2025:1-15. [PMID: 40268520 DOI: 10.1080/07388551.2025.2484598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.
Collapse
Affiliation(s)
- Rubab Shabbir
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wang Wenzhi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chang Yating
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Benpeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shen Linbo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sun Tingting
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhang Shuzhen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Pinghua Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Khan A, Kanwal F, Ullah S, Fahad M, Tariq L, Altaf MT, Riaz A, Zhang G. Plant Secondary Metabolites-Central Regulators Against Abiotic and Biotic Stresses. Metabolites 2025; 15:276. [PMID: 40278405 PMCID: PMC12029941 DOI: 10.3390/metabo15040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
As global climates shift, plants are increasingly exposed to biotic and abiotic stresses that adversely affect their growth and development, ultimately reducing agricultural productivity. To counter these stresses, plants produce secondary metabolites (SMs), which are critical biochemical and essential compounds that serve as primary defense mechanisms. These diverse compounds, such as alkaloids, flavonoids, phenolic compounds, and nitrogen/sulfur-containing compounds, act as natural protectants against herbivores, pathogens, and oxidative stress. Despite the well-documented protective roles of SMs, the precise mechanisms by which environmental factors modulate their accumulation under different stress conditions are not fully understood. This review provides comprehensive insights into the recent advances in understanding the functions of SMs in plant defense against abiotic and biotic stresses, emphasizing their regulatory networks and biosynthetic pathways. Furthermore, we explored the unique contributions of individual SM classes to stress responses while integrating the findings across the entire spectrum of SM diversity, providing a comprehensive understanding of their roles in plant resilience under multiple stress conditions. Finally, we highlight the emerging strategies for harnessing SMs to improve crop resilience through genetic engineering and present novel solutions to enhance agricultural sustainability in a changing climate.
Collapse
Affiliation(s)
- Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China;
| | - Farah Kanwal
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China;
| | - Sana Ullah
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Leeza Tariq
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Tanveer Altaf
- Department of Field Crops, Faculty of Agriculture, Recep Tayyip Erdoğan University, Pazar, Rize 53300, Turkey;
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China;
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
6
|
Khan N. Exploring Plant Resilience Through Secondary Metabolite Profiling: Advances in Stress Response and Crop Improvement. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091600 DOI: 10.1111/pce.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
The metabolome, encompassing small molecules within organisms, provides critical insights into physiology, environmental influences, and stress responses. Metabolomics enables comprehensive analysis of plant metabolites, uncovering biomarkers and mechanisms underlying stress adaptation. Regulatory genes such as MYB and WRKY are central to secondary metabolite synthesis and environmental resilience. By integrating metabolomics with genomics, researchers can explore stress-related pathways and advance crop improvement efforts. This review examines metabolomic profiling under stress conditions, emphasizing drought tolerance mechanisms mediated by amino acids and organic acids. Additionally, it highlights the shikimate pathway's pivotal role in synthesizing amino acids and secondary metabolites essential for plant defense. These insights contribute to understanding metabolic networks that drive plant resilience, informing strategies for agricultural sustainability.
Collapse
Affiliation(s)
- Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Zhang Y, Deng M, Lin B, Tian S, Chen Y, Huang S, Lin Y, Li M, He W, Wang Y, Zhang Y, Chen Q, Luo Y, Wang X, Gu X, Tang H. Physiological and transcriptomic evidence revealed the role of exogenous GABA in enhancing salt tolerance in strawberry seedlings. BMC Genomics 2025; 26:196. [PMID: 40001026 PMCID: PMC11863477 DOI: 10.1186/s12864-025-11368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
As one of the most salt-sensitive crops, strawberry production is severely limited by salt stress. γ--aminobutyric acid (GABA) has been reported to play an important role in the immune response of plants. In this study, the physiological and transcriptomic changes in strawberry seedlings treated with GABA under salt stress were investigated to explore the effect of GABA on salt tolerance. The results showed that exogenous GABA maintained high osmolyte levels, increased antioxidant capacity, and decreased the ROS levels in strawberry leaves under salt stress; the MDA was reduced by 3.27-31.46%, with 10 mM being the most significant effect; the total (Spd + Spm)/ Put ratio was upregulated after GABA treatments. More strikingly, the plants treated with 10 mM GABA significantly increased chlorophyll content and net photosynthetic rate in salt-stressed plants, which was explained by the transcriptomic data showing that the expression levels of most of chlorophyll metabolism and photosynthesis-related genes were upregulated. Furthermore, 38 potential TFs belonging to the WRKY, AP2/ERF, and MYB families were identified that may be positively involved in GABA-induced salt tolerance. Co-expressed network analysis revealed that some of these TFs, such as RAP2.7, WRKY46, and MYB306, were significantly positively correlated with chlorophyll metabolism. These findings provide an important basis for the use of GABA in the breeding of strawberry resistant to salt stress.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meiyi Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bangyu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shan Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang, 621000, China.
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Fan BL, Chen LH, Chen LL, Guo H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int J Mol Sci 2025; 26:1466. [PMID: 40003933 PMCID: PMC11855028 DOI: 10.3390/ijms26041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of multi-omics tools has revolutionized the study of complex biological systems, providing comprehensive insights into the molecular mechanisms underlying critical traits across various organisms. By integrating data from genomics, transcriptomics, metabolomics, and other omics platforms, researchers can systematically identify and characterize biological elements that contribute to phenotypic traits. This review delves into recent progress in applying multi-omics approaches to elucidate the genetic, epigenetic, and metabolic networks associated with key traits in plants. We emphasize the potential of these integrative strategies to enhance crop improvement, optimize agricultural practices, and promote sustainable environmental management. Furthermore, we explore future prospects in the field, underscoring the importance of cutting-edge technological advancements and the need for interdisciplinary collaboration to address ongoing challenges. By bridging various omics platforms, this review aims to provide a holistic framework for advancing research in plant biology and agriculture.
Collapse
Affiliation(s)
| | | | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| |
Collapse
|
10
|
Sidhu D, Vasundhara M, Dey P. Tea-derived endophytic fungi as an alternative source of catechins: Chemical characterization and evaluation of bioactivities. FOOD BIOSCI 2024; 62:105591. [DOI: 10.1016/j.fbio.2024.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
|
11
|
Li J, Chen Y, Zhang R, Wang R, Wu B, Zhang H, Xiao G. OsWRKY70 Plays Opposite Roles in Blast Resistance and Cold Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:61. [PMID: 39271542 PMCID: PMC11399497 DOI: 10.1186/s12284-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The transcription factor WRKYs play pivotal roles in the adapting to adverse environments in plants. Prior research has demonstrated the involvement of OsWRKY70 in resistance against herbivores and its response to abiotic stress. Here, we reported the functional analysis of OsWRKY70 in immunity against fungal diseases and cold tolerance. The results revealed that OsWRKY70 was induced by various Magnaporthe oryzae strains. Knock out mutants of OsWRKY70, which were generated by the CRISPR/Cas9 system, exhibited enhanced resistance to M. oryzae. This was consistent with fortifying the reactive oxygen species (ROS) burst after inoculation in the mutants, elevated transcript levels of defense-responsive genes (OsPR1b, OsPBZ1, OsPOX8.1 and OsPOX22.3) and the observation of the sluggish growth of invasive hyphae under fluorescence microscope. RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) validations demonstrated that differentially expressed genes were related to plant-pathogen interactions, hormone transduction and MAPK cascades. Notably, OsbHLH6, a key component of the JA signaling pathway, was down-regulated in the mutants compared to wild type plants. Further investigation confirmed that OsWRKY70 bound to the promoter of OsbHLH6 by semi-in vivo chromatin immunoprecipitation (ChIP). Additionally, the loss-function of OsWRKY70 impaired cold tolerance in rice. The enhanced susceptibility in the mutants characterized by excessive ROS production, elevated ion leakage rate and increased malondialdehyde content, as well as decreased activity of catalase (CAT) and peroxidase (POD) under low temperature stress was, which might be attributed to down-regulation of cold-responsive genes (OsLti6b and OsICE1). In conclusion, our findings indicate that OsWRKY70 negatively contributes to blast resistance but positively regulates cold tolerance in rice, providing a strategy for crop breeding with tolerance to stress.
Collapse
Affiliation(s)
- Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rujie Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Xu J, Shen S, Hu Z, Xu G, Li H, Xu Z, Shi J. Enhanced Production of Sisomicin in Micromonospora inyoensis by Protoplast Mutagenesis and Fermentation Optimization. Appl Biochem Biotechnol 2024; 196:6459-6472. [PMID: 38381313 DOI: 10.1007/s12010-024-04889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Sisomicin is a broad-spectrum aminoglycoside antibiotic and is the precursor of netilmicin and plazomicin. However, the fermentation level of sisomicin is still low compared with other antibiotics, which restricts the application of sisomicin and its derivatives. In this study, to improve sisomicin production, breeding of high-yielding sisomicin strains was conducted with chemical mutagenesis using Micromonospora inyoensis OG-1 (titer, 1042 U·mL-1) as the starting strain. Protoplast preparation was conducted under optimal conditions, and protoplast mutagenesis was performed with a suitable concentration of diethyl sulfate. Subsequently, a high-yielding and genetically stable strain (H6-32) was obtained by screening, with a sisomicin titer of 1486 U·mL-1 (an increase of 42.6%). Finally, carbon and nitrogen sources were optimized to further improve sisomicin production, and a sisomicin titer of 1780 U·mL-1 was ultimately obtained by controlling the dissolved oxygen level at 30% in a 5-L fermenter, which to the best of our knowledge is the highest reported titer ever achieved by fermentation. Comparative genome analysis showed that a total of 13 genes in the genome of the mutant strain H6-32 were mutated compared to the original strain. This study not only provides a reference for further breeding of high-yielding strains and fermentation optimization, but also enhances our understanding of sisomicin production.
Collapse
Affiliation(s)
- Jianguo Xu
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Wuxi Fortune Pharmaceutical Co., Ltd, Wuxi, 214041, China
| | - Shulin Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Zhehua Hu
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Wang Y, Cui T, Niu K, Ma H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. CHEMOSPHERE 2024; 363:142937. [PMID: 39059638 DOI: 10.1016/j.chemosphere.2024.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
14
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Hu R, Teng X, Li Y. Unleashing plant synthetic capacity: navigating regulatory mechanisms for enhanced bioproduction and secondary metabolite discovery. Curr Opin Biotechnol 2024; 88:103148. [PMID: 38843577 PMCID: PMC11531776 DOI: 10.1016/j.copbio.2024.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 08/11/2024]
Abstract
Plant natural products (PNPs) hold significant pharmaceutical importance. The sessile nature of plants has led to the evolution of chemical defense mechanisms over millions of years to combat environmental challenges, making it a crucial and essential defense weapon. Despite their importance, the abundance of these bioactive molecules in plants is typically low, and conventional methods are time-consuming for enhancing production. Moreover, there is a pressing need for novel drug leads, exemplified by the shortage of antibiotics and anticancer drugs. Understanding how plants respond to stress and regulate metabolism to produce these molecules presents an opportunity to explore new avenues for discovering compounds that are typically under the detection limit or not naturally produced. Additionally, this knowledge can contribute to the advancement of plant engineering, enabling the development of new chassis for the biomanufacturing of these valuable molecules. In this perspective, we explore the intricate regulation of PNP biosynthesis in plants, and discuss the biotechnology strategies that have been and can be utilized for the discovery and production enhancement of PNPs in plants.
Collapse
Affiliation(s)
- Rongbin Hu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Xiaoxuan Teng
- Program of Chemical Engineering, Department of Nanongineering, University of California, San Diego, CA 92093, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Mao JC, Yan M, Li JH, Yang JY, Wang HJ. The role of small RNAs in resistant melon cultivar against Phelipanche aegyptiaca parasitization. Front Microbiol 2024; 15:1408926. [PMID: 38774502 PMCID: PMC11106454 DOI: 10.3389/fmicb.2024.1408926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Bidirectional trans-kingdom RNA silencing, a pivotal factor in plant-pathogen interactions, remains less explored in plant host-parasite dynamics. Here, using small RNA sequencing in melon root systems, we investigated microRNA (miRNA) expression variation in resistant and susceptible cultivars pre-and post-infection by the parasitic plant, broomrape. This approach revealed 979 known miRNAs and 110 novel miRNAs across 110 families. When comparing susceptible (F0) and resistant (R0) melon lines with broomrape infection (F25 and R25), 39 significantly differentially expressed miRNAs were observed in F25 vs. F0, 35 in R25 vs. R0, and 5 in R25 vs. F25. Notably, two miRNAs consistently exhibited differential expression across all comparisons, targeting genes linked to plant disease resistance. This suggests their pivotal role in melon's defense against broomrape. The target genes of these miRNAs were confirmed via degradome sequencing and validated by qRT-PCR, ensuring reliable sequencing outcomes. GO and KEGG analyses shed light on the molecular functions and pathways of these differential miRNAs. Furthermore, our study unveiled four trans-kingdom miRNAs, forming a foundation for exploring melon's resistance to broomrape.
Collapse
Affiliation(s)
| | | | | | | | - Hao-Jie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
17
|
Zhang W, Sun Y, Wang H, Xu M, He C, Wang C, Yu Y, Zhang Z, Su L. Exogenous Melatonin Enhances Dihydrochalcone Accumulation in Lithocarpus litseifolius Leaves via Regulating Hormonal Crosstalk and Transcriptional Profiling. Int J Mol Sci 2024; 25:4592. [PMID: 38731810 PMCID: PMC11083347 DOI: 10.3390/ijms25094592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 μM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.
Collapse
Affiliation(s)
- Wenlong Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yuqi Sun
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Hongfeng Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Mingfeng Xu
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Chunmei He
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Congcong Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Yongli Yu
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (Y.S.); (Y.Y.)
| | - Lingye Su
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangzhou 510520, China; (H.W.); (M.X.); (C.H.); (C.W.)
| |
Collapse
|
18
|
Wu JW, Zhao ZY, Hu RC, Huang YF. Genome-wide identification, stress- and hormone-responsive expression characteristics, and regulatory pattern analysis of Scutellaria baicalensis SbSPLs. PLANT MOLECULAR BIOLOGY 2024; 114:20. [PMID: 38363403 PMCID: PMC10873456 DOI: 10.1007/s11103-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ren-Chuan Hu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
19
|
González-Rodríguez T, García-Lara S. Maize hydroxycinnamic acids: unveiling their role in stress resilience and human health. Front Nutr 2024; 11:1322904. [PMID: 38371498 PMCID: PMC10870235 DOI: 10.3389/fnut.2024.1322904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Maize production is pivotal in ensuring food security, particularly in developing countries. However, the crop encounters multiple challenges stemming from climatic changes that adversely affect its yield, including biotic and abiotic stresses during production and storage. A promising strategy for enhancing maize resilience to these challenges involves modulating its hydroxycinnamic acid amides (HCAAs) content. HCAAs are secondary metabolites present in plants that are essential in developmental processes, substantially contributing to defense mechanisms against environmental stressors, pests, and pathogens, and exhibiting beneficial effects on human health. This mini-review aims to provide a comprehensive overview of HCAAs in maize, including their biosynthesis, functions, distribution, and health potential applications.
Collapse
Affiliation(s)
| | - Silverio García-Lara
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| |
Collapse
|
20
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
21
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|